线性方程组、齐次与非齐次的基本概念(线性代数基础)

线性方程组、齐次与非齐次的基本概念(线性代数基础)

线性方程

一个线性方程是指其变量的每项都是线性的,即每个变量的最高次方为1。一般形式如下:
a 1 x 1 + a 2 x 2 + ⋯ + a n x n = b a_1x_1+a_2x_2+⋯+a_nx_n=b a1x1+a2x2++anxn=b
其中:

  • a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an 是常数系数
  • x 1 , x 2 , … , x n x1,x2,…,xn x1,x2,,xn 是未知数
  • b b b 是常数项(自由项)

线性方程组

当多个线性方程共同求解时,称为一个线性方程组。一般形式如下:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \left\{\begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \end{array}\right. a11x1+a

你可能感兴趣的:(考研数二复习,线性代数,机器学习,算法,考研,学习,数学建模,矩阵)