- R语言倾向性匹配得分(PSM)分析
后端工程实践
r语言java开发语言R语言
R语言倾向性匹配得分(PSM)分析倾向性匹配得分(PropensityScoreMatching,PSM)是一种常用的统计方法,用于处理观察研究中的选择性偏倚。它通过建立一个倾向性得分模型,将受试者分为处理组和对照组,以实现类似于随机对照试验的效果。本文将介绍如何使用R语言进行倾向性匹配得分分析,并提供相应的源代码。导入所需的R包在进行PSM分析之前,首先需要导入所需的R包。常用的包包括Match
- Python爬虫实战:研究MarkupSafe库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言MarkupSafe
1.引言1.1研究背景与意义随着互联网数据量的爆炸式增长,网页内容自动提取与分析技术在信息检索、舆情监控、数据挖掘等领域的需求日益凸显。网络爬虫作为获取网页内容的核心工具,能够自动化采集互联网信息。然而,直接渲染爬取的网页内容存在安全隐患,特别是跨站脚本攻击(XSS)风险。攻击者可能通过注入恶意脚本窃取用户信息或破坏网站功能。MarkupSafe作为Python的安全字符串处理库,能够有效处理不可
- Python爬虫实战:研究sanitize库相关技术
ylfhpy
爬虫项目实战python爬虫网络开发语言安全sanitize
1.引言1.1研究背景与意义在当今数字化时代,互联网已成为人们获取信息、交流互动的重要平台。随着Web2.0技术的发展,用户生成内容(UGC)、社交媒体嵌入、第三方插件等功能极大丰富了网页的内容和交互性,但也带来了严峻的安全挑战。根据Web应用安全联盟(WAS)的统计数据,2025年全球范围内因网页安全漏洞导致的数据泄露事件超过15万起,造成的经济损失高达250亿美元。其中,跨站脚本攻击(XSS)
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- python网络安全实战_基于Python网络爬虫实战
weixin_39907850
python网络安全实战
文件的操作:一般都要使用os模块和os.path模块importos.pathos.path.exists('D:\\Python\\1.txt')#判断文件是否存在abspath(path)#返回path所在的绝对路径dirname(p)#返回目录的路径exists(path)#判断文件是否存在getatime(filename)#返回文件的最后访问时间getctime(filename)#返回
- JVM调优实战 Day 11:JVM参数调优最佳实践
在未来等你
JVM调优实战JVMJava性能优化调优虚拟机
【JVM调优实战Day11】JVM参数调优最佳实践文章标签jvm,jvm调优,java性能优化,jvm参数配置,垃圾回收,JVM监控,Java开发,架构设计文章简述在Java应用的性能调优过程中,JVM参数的合理配置是影响系统稳定性和吞吐量的关键因素。本文作为“JVM调优实战”系列的第11天内容,全面讲解JVM参数调优的核心概念、技术原理与实际应用场景。文章从JVM内存模型、GC策略出发,深入分析
- 零信任架构——重构企业安全边界的新范式
月_o9
网络安全
零信任架构——重构企业安全边界的新范式(字数:998)传统边界的崩塌与信任危机防火墙与VPN构筑的“城堡护城河”模型在云原生与远程办公时代彻底瓦解。当数据散布于公有云、边缘设备与SaaS平台,当供应链攻击可穿透层层防护,“内部可信”的假设已成为最大安全漏洞。零信任(ZeroTrust)的核心哲学正是:永不信任,持续验证(NeverTrust,AlwaysVerify)。它并非单一技术,而是以身份为
- 文心大模型4.5及X1重磅上线,真实测评
2025年3月16日,人工智能领域迎来一场重要盛事——百度文心大模型4.5如期正式发布。与此同时,百度还惊喜推出了另一款全新模型——文心大模型X1。目前,文心大模型4.5和X1已在文心一言官网(https://yiyan.baidu.com/)正式上线,并免费向用户开放。其中,文心大模型4.5面向企业用户和开发者,用户可以通过登录百度智能云千帆大模型平台,轻松调用文心大模型4.5的API接口,快速
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- 企业级RAG系统架构设计与实现指南(Java技术栈)
在未来等你
大模型应用开发AI技术编程JavaSpring
企业级RAG系统架构设计与实现指南(Java技术栈)开篇:RAG系统的基本概念与企业应用价值在当今快速发展的AI技术背景下,检索增强生成(Retrieval-AugmentedGeneration,RAG)已成为构建智能问答、知识库管理、个性化推荐等应用的核心技术之一。RAG系统通过结合信息检索与自然语言生成(NLG),能够有效提升模型对特定领域数据的适应能力,避免传统大模型在训练数据不足或数据更
- 面向隐私保护的机器学习:联邦学习技术解析与应用
Blossom.118
机器学习与人工智能机器学习人工智能深度学习tensorflowpython神经网络cnn
在当今数字化时代,数据隐私和安全问题日益受到关注。随着《数据安全法》《个人信息保护法》等法律法规的实施,企业和机构在数据处理和分析过程中面临着越来越严格的合规要求。然而,机器学习模型的训练和优化往往需要大量的数据支持,这就产生了一个矛盾:如何在保护数据隐私的前提下,充分利用数据的价值进行机器学习模型的训练和优化?联邦学习(FederatedLearning)作为一种新兴的隐私保护技术,为解决这一问
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——2.SimHash算法文本去重实战案例:新闻文章去重场景
SimHash算法文本去重实战案例:新闻文章去重场景一、案例背景与目标二、具体实现步骤与示例1.**待去重文本示例**2.**步骤1:文本预处理与特征提取**3.**步骤2:特征向量化与哈希映射**4.**步骤3:特征向量聚合**5.**步骤4:降维生成SimHash值**6.**步骤5:计算汉明距离与去重判断**三、工程化实现代码(Python简化示例)四、案例总结与优化点一、案例背景与目标假设
- 什么是 A/B 测试?
茫茫人海一粒沙
人工智能
一,什么是A/B测试?A/B测试的基本思想是:将用户随机分成两组,分别使用不同的版本,观察结果差异是否显著。A组:使用旧版本(或基线方案)B组:使用新版本(或新模型)然后对比它们的表现,例如:点击率(CTR)转化率(ConversionRate)用户停留时长任务完成率微调后模型的自动应答准确率、满意度等二,为什么叫A/B?A代表“控制组”(ControlGroup):通常是当前线上正在运行的版本B
- 借助antd-design-x-vue实现接入通义千问大语言模型的对话功能(附源码)
说在前面现在大模型如此火热,想必你跟我也有同样的想法,实现一个自己的AI对话框,相比Dify等组件分享出来的对话框,自己实现起来可以更加灵活和适应需求。虽然Element,Antd都发布了各自的对话框组件,我说句实话,这个理解起来真没之前那种Button,Card这些组件来的简单,下面分享我的一个小Demo。功能拆解首先,官方帮我们实现了一个小的原型,附带了几乎所有的功能,地址如下:ant-des
- 多模态大语言模型arxiv论文略读(145)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文标题:ReasoningLimitationsofMultimodalLargeLanguageModels.AcasestudyofBongardProblems➡️论文作者:MikołajMałkiński,SzymonPawlo
- 多模态大语言模型arxiv论文略读(138)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记深度学习
UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文标题:UnderstandingtheRoleofLLMsinMultimodalEvaluationBenchmarks➡️论文作者:BotianJiang,LeiLi,XiaonanLi,ZhaoweiLi,XiachongFeng,LingpengKong,QiLiu,
- 微调大语言模型后,如何评估效果?一文讲清
茫茫人海一粒沙
人工智能
在做大语言模型(LLM)微调时,“怎么判断模型调得好不好”是必须回答的问题。无论是在研究、项目落地,还是面试中,评估方法都不能停留在“训练loss降了”这么简单。本文从评估目标、技术指标、业务适配、实战建议四个维度,讲清楚微调后的模型评估怎么做,为什么这么做。一,评估前,先搞清楚目标不同的微调目的,评估方式也不同:✅精调任务能力:判断模型是否更好完成分类、问答、摘要、代码生成等任务。✅领域适应:关
- 多模态大语言模型arxiv论文略读(140)
SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-TunedInstructionGeneration➡️论文标题:SemiHVision:EnhancingMedicalMultimodalModelswithaSemi-HumanAnnotatedDatasetandFine-T
- 如何实现聊天模型响应流式处理
yunwu12777
langchain
在现代人工智能应用中,流式处理聊天模型的响应成为一种常见需求,特别是在需要实时输出或大规模处理时。本文将详细介绍如何在Python中实现聊天模型的同步和异步流式处理,使用langchain库中提供的ChatAnthropic模型作为示例。技术背景介绍流式处理是指从模型逐步获取输出,而不是等待整个输出完成。这对于处理长文本生成或需要动态响应的应用场景特别有用。langchain库中的聊天模型实现了R
- 本地运行大型语言模型(LLM)的实践指南
yunwu12777
语言模型人工智能自然语言处理
技术背景介绍近年来,项目如llama.cpp、Ollama、GPT4All等的流行标志着在本地设备上运行大型语言模型(LLM)的需求日益增长。选择在本地运行LLM,至少有两个重要的好处:隐私和成本。隐私上,数据不需要发送到第三方,避免了商业服务条款的限制;成本方面,无需支付推理费用,尤其是对于那些需要大量计算的应用,如长时间的模拟和总结。核心原理解析在本地运行LLM,需要准备以下几个条件:开源LL
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- autobank渗流分析计算教程_高土石坝坡稳定性分析
Oliverzzzhang
原标题:基于滑弧动力有限元耦合法的高土石坝坝坡稳定性分析摘要:为研究高土石坝坝坡的稳定性,以某水电站高土石坝坝坡为例,采用条分法与有限元法耦合的计算方法进行分析,选取3个典型断面,对其设计工况和校核工况下的上下游断面的安全系数进行计算。计算结果表明:(1)下游坝坡最小安全系数比上游大,设计工况安全系数比校核工况安全系数大;(2)3个断面在各工况下取得最小值的时刻近似,符合坝坡稳定的计算规律;(3)
- 银行家算法
后会无期77
算法算法
文章目录银行家算法概述银行贷款案例A再次申请50万,能批准吗?B再次申请40万,能批准吗?或者C申请20万,能批准吗?安全序列和不安全序列多维度资源分配操作系统资源分配银行家算法总结数据结构银行家算法的步骤安全性算法步骤死锁的避免银行家算法概述银行家算法(Banker’sAlgorithm)是一个避免死锁(Deadlock)的著名算法,是由艾兹格·迪杰斯特拉在1965年为T.H.E系统设计的一种避
- TVFEMD-CPO-TCN-BiLSTM多输入单输出模型
微光-沫年
matlab回归机器学习
47-TVFEMD-CPO-TCN-BiLSTM多输入单输出模型适合单变量,多变量时间序列预测模型(可改进,加入各种优化算法)时变滤波的经验模态分解TVFEMD时域卷积TCN双向长短期记忆网络BiLSTM时间序列预测模型另外以及有TCN-BILSTMTCN-LSTMTCN-BiLSTM-ATTENTION等!(此不包含在内,另算的!)Matlab代码!
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- 构建私有视觉搜索应用:多模态大模型的应用实例
2301_80727036
自然语言处理
在当今的科技时代,视觉搜索功能已经不再是新鲜事物,许多智能手机用户都可以通过自然语言搜索照片。随着开源多模态大型语言模型(Multi-modalLLMs)的兴起,我们现在可以为自己构建这种视觉搜索应用,用于管理自己的私人照片收藏。本教程将向您展示如何通过代码示例,使用开源多模态LLM构建私有视觉搜索和问答系统。技术背景介绍多模态大模型结合了文本和图像处理能力,使得我们可以开发更智能的应用程序。通过
- zookeeper Curator(5):集群架构和集群搭建
后会无期77
zookeeperCuratorzookeeper架构分布式
文章目录一、集群架构:Leader-Follower模式二、核心机制:ZAB协议三、Leader选举机制四、集群部署要点五、优势与挑战Zookeeper集群是一个由多个Zookeeper服务实例组成的分布式协调服务系统,通过奇数个节点(通常3、5、7个)的协作,提供高可用性、容错性和数据一致性,适用于分布式环境下的配置管理、命名服务、分布式锁等场景。以下从架构、核心机制、选举机制、数据模型、应用场
- 中华人民共和国网络安全法
周周记笔记
网络安全安全
链接:中华人民共和国网络安全法.pdf总则:明确立法目的是保障网络安全,维护网络空间主权和国家安全等,规定了本法适用范围,强调国家坚持网络安全与信息化发展并重的方针,确定了相关部门的网络安全监督管理职责,还对网络运营者义务、网络使用规范等作出原则性规定。网络安全支持与促进:国家建立和完善网络安全标准体系,扶持重点网络安全技术产业和项目,推进网络安全社会化服务体系建设,鼓励开发网络数据安全保护和利用
- AI人工智能助力空间智能领域提升运营效率
AI智能探索者
AIAgent智能体开发实战人工智能网络ai
AI人工智能助力空间智能领域提升运营效率关键词:AI人工智能、空间智能领域、运营效率、智能算法、数据驱动摘要:本文聚焦于AI人工智能在空间智能领域的应用,旨在探讨其如何助力该领域提升运营效率。首先介绍了空间智能领域的背景和相关概念,阐述了AI在其中的核心作用和原理。接着详细讲解了相关核心算法,并结合数学模型进行分析。通过项目实战案例展示了AI在空间智能领域的具体应用和实现方式。同时探讨了实际应用场
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end