- 三种方法详解最长回文子串问题
文章目录题目描述方法一:动态规划状态转移方程:状态转移公式:代码实现:使用滚动数组优化空间方法二:中心扩展法核心思想算法步骤代码实现复杂度分析方法三:马拉车算法算法思路代码实现复杂度分析三种方法对比回文子串是字符串处理中的经典问题,本文将通过动态规划、中心扩展和马拉车算法三种方法,详细解析如何高效求解最长回文子串,并对比各方法的优劣。题目描述方法一:动态规划我们定义一个二维布尔数组dp,其中:dp
- 力扣 经典算法之爬楼梯
今天来用两种的方法解一道题题目如下:假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?先分析题目吧,我觉得它在考我数学思维,解数学题嘛,一步步来吧。n=1:走1步,只能有1种解法n=2:可以走1+1步,也可以直接走2步,2种解法n=3:可以走的方式有:1+1+1,1+2,2+1,共3种n=4:走法有1+1+1+1,1+2+1,2+1+1,1+1
- 【LeetCode 热题 100】54. 螺旋矩阵
xumistore
LeetCodeleetcode矩阵算法java
Problem:54.螺旋矩阵题目:给你一个m行n列的矩阵matrix,请按照顺时针螺旋顺序,返回矩阵中的所有元素。文章目录整体思路完整代码时空复杂度时间复杂度:O(M*N)空间复杂度:O(1)(不考虑输出列表)整体思路这段代码旨在解决一个经典的矩阵问题:螺旋矩阵(SpiralMatrix)。问题要求按照顺时针螺旋的顺序,返回矩阵中的所有元素。该算法采用了一种非常直观的“路径模拟”策略。它模拟一个
- 算法45:动态规划专练(力扣70: 爬楼梯 力扣746:使用最小花费爬楼梯)
适合java程序员的算法
算法算法动态规划leetcode
力扣70题:爬楼梯假设你正在爬楼梯。需要n阶你才能到达楼顶。每次你可以爬1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例1:输入:n=2输出:2解释:有两种方法可以爬到楼顶。1.1阶+1阶2.2阶示例2:输入:n=3输出:3解释:有三种方法可以爬到楼顶。1.1阶+1阶+1阶2.1阶+2阶3.2阶+1阶分析:1.如果有1个楼梯,那只能走1步登顶。1中方法2.如果有2个楼梯。a.我们可以一次走一
- 区块链重塑域名商业版图:技术革新、市场机遇与未来图景
boyedu
区块链终端域名区块链终端域名
在Web3.0时代,区块链技术正以去中心化、抗审查、身份绑定等特性重构域名系统,不仅解决了传统DNS的安全漏洞与中心化风险,更开创了数字身份、品牌资产化等全新商业模式。以下从技术革新、市场现状、挑战应对及典型案例四个维度,深入剖析区块链域名的商业潜力。一、技术革新:区块链如何重构域名基础设施?去中心化根域名系统Handshake协议:通过UTXO模型与SHA3算法构建无需许可的域名注册体系,其HN
- SEO优化技巧深度解析:从算法逻辑到实战策略的全链路突破
boyedu
网站建设网站建设网站运营网站架构
第一章搜索引擎算法逻辑:SEO优化的底层密码1.1算法进化史:从关键词匹配到意图理解搜索引擎算法经历了从简单关键词匹配到复杂语义理解的跨越式发展。早期算法以PageRank为核心,通过分析网页间链接关系评估权威性。随着Hummingbird算法的推出,搜索引擎开始解析自然语言,BERT算法进一步实现上下文语义理解。当前算法已形成多维度评估体系,涵盖内容质量、用户体验、权威性建设等层面。以Googl
- 香港推出的稳定币和数字货币的区别
boyedu
加密货币数字货币香港稳定币加密货币虚拟货币
香港推出的稳定币与数字货币在定义、发行主体、监管框架、使用场景及战略定位上存在显著差异。以下为具体解析:一、定义与性质的核心区别稳定币定义:与法定货币(如美元、港元)或资产挂钩的加密货币,旨在通过抵押或算法维持价值稳定。示例:京东币链科技测试的稳定币锚定港元,用于跨境支付;蚂蚁数科计划发行与美元挂钩的稳定币。特点:保留加密货币的去中心化特性,但通过储备资产(如现金、国债)减少价格波动。数字货币定义
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 云原生API Gateway:连接微服务的桥梁
AI云原生与云计算技术学院
云原生gateway微服务ai
云原生APIGateway:连接微服务的桥梁关键词:云原生、API网关、微服务架构、服务治理、流量管理、服务网格、DevOps摘要:本文深入探讨云原生环境下API网关的核心原理与实践应用,解析其在微服务架构中作为统一入口的关键作用。通过详细阐述API网关的核心功能、技术架构、算法原理及数学模型,结合Kubernetes实战案例演示流量管理、安全防护、服务编排等核心能力。同时分析典型应用场景,推荐前
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- AI人工智能领域,Stable Diffusion掀起的技术风暴
AI大模型应用工坊
人工智能stablediffusionai
AI人工智能领域,StableDiffusion掀起的技术风暴关键词:AI人工智能、StableDiffusion、技术风暴、图像生成、扩散模型摘要:本文深入探讨了AI人工智能领域中StableDiffusion所掀起的技术风暴。首先介绍了StableDiffusion的背景,包括其目的、预期读者和文档结构等。详细阐述了核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。对核心算法原
- AIGC 领域 AI 写作如何实现智能内容推荐
SuperAGI2025
AIGC人工智能ai
AIGC领域AI写作如何实现智能内容推荐关键词:AIGC、AI写作、智能内容推荐、推荐算法、用户画像摘要:本文聚焦于AIGC领域中AI写作的智能内容推荐实现。首先介绍了该主题的背景,包括目的、预期读者等内容。接着阐述了核心概念与联系,如AIGC、AI写作、智能内容推荐等概念及其关联。详细讲解了核心算法原理,包括协同过滤、基于内容的推荐等,并给出Python代码示例。探讨了相关数学模型和公式,通过具
- 华为OD机试 2025B卷 - 字符串加密 (C++ & Python & JAVA & JS & C语言)
YOLO大师
华为od华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
2025B卷目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解2025B卷100分题型题目描述给你一串未加密的字符串str,通过对字符串的每一个字母进行改变来实现加密,加密方式是在每一个字母str[i]偏移特定数组元素a[i]的量,数组a前三位已经赋值:a[0]=1,a[1]=2,a[2]=4。当i>=3时,数组元素a[i]=a[i-1]+a[i-2]+a[i-3]。例如:
- 俄罗斯方块AI深度解析:从算法原理到实现细节
智算菩萨
Python小游戏项目实战人工智能算法
俄罗斯方块AI深度解析:从算法原理到实现细节前言俄罗斯方块,这个诞生于1984年的经典游戏,至今仍然是人工智能研究领域的热门课题。当简单的几何形状在网格中不断下落时,看似简单的规则背后却隐藏着复杂的策略决策问题。本文将深入剖析一个基于Python实现的俄罗斯方块AI系统,探讨其如何通过精巧的算法设计实现近乎完美的自动游戏表现。游戏状态的数字化抽象在构建任何游戏AI之前,我们首先需要将人类直观理解的
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- 专知智库数据场景生态:开启全球数字文明新纪元——数据零件×场景编码×SEI指数构建下一代数字经济基座
人形机器人专利池研究中心
数据场景架构师数据零件架构师数据场景生态人工智能数据场景架构师算法大数据
一、传统数字经济的“柏林墙困境”全球产业痛点扫描:数据孤岛化:企业间数据流通成本高达交易额37%(麦肯锡2024)价值黑箱化:85%数据资产无法量化定价(普华永道审计报告)技术碎片化:同类算法重复开发年耗$1800亿破局宣言:专知智库提出“可拆解、可组合、可交易”三可原则,以数据零件+场景编码+SEI计量重构全球数字基础设施二、三大基座:数字经济的新操作系统1.数据零件(DP):技术场景最小单元革
- 算法题目记录
iamwiam
java
数据空间研究院-后端试题题目一:线程安全的链表描述:实现题目二:自定义注解与反射描述:实现题目三:简化的消息队列描述实现题目一:线程安全的链表描述:实现一个线程安全的链表类ThreadSafeLinkedList,支持以下操作:add(Telement)-在链表末尾添加元素。remove(Telement)-移除链表中的指定元素。contains(Telement)-检查链表中是否包含指定元素。要
- 6款专业漏斗图工具,提升你的分析效率
Designseek满血版
信息可视化人工智能
漏斗图,这一以漏斗形状展示数据逐步减少情况的可视化工具,在日常数据分析中扮演着重要角色。它通过直观的宽度变化,展现了从一阶段到另一阶段数据的流失率,从而清晰地揭示了不同阶段的数据转换效果。通常,漏斗图自上而下排列,顶部代表初始数据,而随着向下的进展,数据逐渐减少,体现了各阶段的流转情况。在数据分析和商业汇报中,漏斗图因其直观展示流程转化率的特性,成为数据可视化的核心工具之一。无论是销售漏斗、用户行
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- 十五天Python系统学习教程第十五天
Day15详细学习计划:Python综合项目实战与学习路径规划学习目标✅综合运用前14天知识完成完整项目开发✅掌握生产级项目架构设计与优化技巧✅制定后续学习计划与技能提升方案✅理解Python工程化开发最佳实践一、实战项目:企业级任务管理系统1.1项目需求核心功能:用户认证(JWT令牌)任务CRUD与状态流转(待办/进行中/已完成)任务分类与优先级管理数据统计可视化(任务完成率/耗时分析)邮件通知
- 算法 堆与堆排序
堆的定义与分类堆是一种特殊的完全二叉树,通常分为两种类型:大顶堆(大根堆):每个节点的值都大于或等于其子节点的值。小顶堆(小根堆):每个节点的值都小于或等于其子节点的值。堆的性质结构性:堆是一棵完全二叉树,即除了最后一层外,其他层的节点都是满的,且最后一层的节点从左到右填充。有序性:堆中每个节点的值都满足特定的顺序关系(大于或小于子节点)。堆的存储数组索引0通常作为堆的根节点。对于索引为i的节点,
- python函数
四、函数定义P.1函数定义把一段实现某个功能的完整代码,用一个函数封装,后期可以通过调用函数名,实现依次编写,多次调用的目的函数,可以等价于我们初高中学过的f(x),f是运算法则,也就是代码函数中对应的代码执行块,每有一个x对应经过f运算之后得到一个值,如f(x)对应的是让x乘3加2,每有一个x进入f中便会得到一个值。高中对应的函数三要素是,定义域、运算法则、值域,而编程中的函数也有三要素,分别为
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 单片机:实现国密SM2算法(附完整源码)
源代码大师
单片机实战教程单片机算法嵌入式硬件
单片机:实现国密SM2算法主要功能模块1.定义椭圆曲线参数2.大数运算(示例:大数比较)3.椭圆曲线点定义4.密钥生成5.加密与解密注意事项实现国密SM2算法在单片机上的完整源码涉及多个模块,包括椭圆曲线运算、SM3哈希函数、密钥生成、加密解密以及签名验证等。以下是一个基于C语言的简化版SM2实现示例,适用于资源有限的单片机环境。请注意,实际应用中可能需要根据具体单片机的性能和资源进行优化。主要功
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 你懂安全优化SSL嘛?
巴依老爷coder
安全安全ssl网络协议
一文带你了解SSL全部内容CIA?SSL概述加密算法对比数字签名与证书RSA加密算法代码实操1.更完善的错误处理2.证书验证3.资源管理改进常见的面试问题CIA?在信息安全领域,CIA(保密性、完整性、可用性)是核心原则,各有其实现方法与面临的威胁:保密性:实现方法:运用加密技术,对称加密(如AES)适合大量数据快速加密,非对称加密(如RSA)用于密钥交换与数字签名;借助访问控制手段,像基于角色的
- 【Python 算法零基础 4.排序 ⑦ 桶排序】
L_cl
Python常见算法排序算法数据结构算法
草木不争高,争的是生生不息——25.5.26选择排序回顾①遍历数组:从索引0到n-1(n为数组长度)。②每轮确定最小值:假设当前索引i为最小值索引min_index。从i+1到n-1遍历,若找到更小元素,则更新min_index。③交换元素:若min_index≠i,则交换arr[i]与arr[min_index]。'''①遍历数组:从索引 0 到 n-1(n 为数组长度)。②每轮确定最小值:假设
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">