- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 家用充电桩远程监控安全管理系统解决方案
蓝蜂物联网
物联网远程监控边缘计算物联网
家用充电桩远程监控安全管理系统解决方案在当今电动汽车日益普及的背景下,家用充电桩的安全管理成为了广大车主关注的重点问题。为了实现对充电桩的高效、精准、远程监控,一套完善的家用充电桩远程监控安全管理系统解决方案应运而生。本方案旨在通过先进的物联网技术、云计算、大数据分析以及人工智能等科技手段,构建一个集实时监测、异常预警、故障诊断、数据统计、远程控制于一体的智能化平台,确保充电桩的安全运行及用户充电
- 为什么 Python 是 AI 的首选语言?
文章目录一、简洁优雅,易于上手二、丰富的库和框架1.数据处理与分析2.数据可视化3.机器学习与深度学习框架三、强大的社区支持四、跨平台性和可移植性五、与其他语言的互操作性文章配套代码已上传,点击查看:https://download.csdn.net/download/2501_92578370/91180848在人工智能(AI)技术飞速发展的今天,编程语言的选择对AI开发者来说至关重要。当你翻开
- 【Python基础】13 知识拓展:CPU、GPU与NPU的区别和联系
智算菩萨
python开发语言人工智能
引言:处理器大战背后的技术革命在人工智能蓬勃发展的今天,我们经常听到CPU、GPU、NPU这些术语,但你是否真正理解它们之间的区别和联系?作为Python开发者,我们更关心的是:在什么场景下选择哪种处理器?如何在Python中充分发挥它们的性能优势?这篇文章将从技术原理出发,结合Python实战代码,深入解析这三种处理器的特点、应用场景和发展趋势,帮助你在面对不同计算任务时做出最优选择。第一章:C
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
Java八股文
python人工智能开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- 世界人工智能大会在即,中国AI布局展现多重深意
未来智慧谷
人工智能世界人工智能大会(WAIC)
2025年世界人工智能大会(WAIC)将于7月26日至28日在上海举行。本次大会以“智能时代同球共济”为主题,展览面积首次突破7万平方米,汇聚了来自30余个国家和地区的1200余位嘉宾,其中包括12位图灵奖、诺贝尔奖得主及80余位中外院士。这一全球性平台的搭建,揭示了中国在人工智能领域深化发展的战略路径。技术展示:从模型开源到终端落地本届大会将呈现3000余项前沿展品,涵盖40余款大模型、60余款
- 全面学习 OpenAI API:从 Python 教程到 API Key 使用详解,快速上手调用和部署
我的学校你进不来
学习python开发语言人工智能语言模型深度学习
说在前面我们正身处在人工智能迅猛发展的时代,OpenAIAPI无疑是其中的翘楚,它提供了强大的工具,让开发者能够创建智能应用程序。然而,对于许多刚接触这个领域的开发者来说,如何开始使用OpenAIAPI可能是一个不小的挑战。这篇文章旨在全面介绍如何从零开始学习和使用OpenAIAPI,从申请APIKey到在Python中调用和部署,助力你快速上手并实现在项目中的应用。在接下来的内容中,我们将详细阐
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- UI TARS 和 Magentic-UI的区别和差异
frank0060071
ui运维
UI-TARS和Magentic-UI都是当前前沿的AI驱动自动化工具,但它们在设计理念技术架构和应用场景上存在显著差异。以下是两者的核心区别和对比分析:1.开发背景与目标定位UI-TARS由字节跳动开发,专注于跨平台GUI自动化,强调通过自然语言指令实现端到端的任务执行(如打开应用填写表单等),目标是成为通用型视觉语言模型代理,减少人工干预核心定位:多模态感知与自动化执行,适用于需要高精度界面操
- Spring AI ETL Pipeline使用指南
超级小忍
SpringAIspring人工智能
前言(Introduction)版本声明:本文基于SpringAI1.0.0版本编写。由于SpringAI目前仍处于活跃开发阶段,API和组件可能在后续版本中发生变化,请注意及时关注官方文档更新以保持兼容性。在当今大数据和人工智能快速发展的背景下,ETL(Extract,Transform,Load)系统已经不再只是简单的数据搬运工。ETL是数据仓库和数据分析流程中的核心环节,它负责将分散的数据从
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 借助 KubeMQ 简化多 LLM 集成
强哥之神
智能路由器transformer深度学习语言模型架构deepseek
将多个大语言模型(LLM),如OpenAI和Anthropic的Claude集成到应用程序中是一项具有挑战性的任务。处理不同API和通信协议的复杂性,以及确保请求高效路由,都会带来诸多难题。然而,使用消息代理和路由器可以成为解决这些问题的优雅方案,能处理这些痛点并提供多项关键优势。在本文中,我们将探讨如何实现这一点,并提供代码示例,指导大家如何使用KubeMQ构建一个与OpenAI和Anthrop
- 科普语音交互所需开源技术方案
以下是ASR(自动语音识别)、LLM(大语言模型)和TTS(文本转语音)三者结合的应用场景及开源方案:一、应用场景智能语音助手如百聆(Bailing),支持语音输入、意图理解、任务管理及语音输出,端到端延迟仅800ms,支持打断和记忆功能。车载语音交互系统(如蔚来、小鹏),结合ASR识别指令、LLM处理复杂查询(如"找有充电桩的高评分餐厅")和TTS提供语音反馈。语音到语音翻译(S2ST)阿里Fu
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 通义灵码+DeepSeek:国产代码生成王炸组合,带你飞!
引言在人工智能飞速发展的当下,AI代码生成工具如雨后春笋般涌现,为开发者们带来了前所未有的编程体验。其中,国产的通义灵码结合DeepSeek模型异军突起,成为众多开发者关注的焦点。它们凭借强大的功能和出色的表现,在代码生成领域崭露头角,不仅提升了开发效率,还为编程工作流注入了新的活力。然而,如同任何新兴技术一样,在使用过程中也会遇到各种问题和挑战。本文将通过实测,深入剖析通义灵码与DeepSeek
- uni-app 多端开发中 AI 的集成与适配:一次开发,智能多端运行
欧阳天羲
大前端与AI的深度融合#AI与大前端框架结合篇uni-app人工智能前端
一、引言:uni-app与AI多端集成的背景在当今跨平台开发趋势下,uni-app凭借"一次编写,多端运行"的特性成为企业级应用开发的首选框架之一。随着人工智能技术的普及,将AI能力集成到多端应用中已成为提升用户体验的关键需求。然而,小程序、APP、Web等不同端的运行环境差异显著,如何实现AI功能的统一集成与高效适配成为开发难点。本文将系统讲解在uni-app框架中集成AI能力的完整方案,涵盖跨
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- LLM---大语言模型技术研究报告
摘要大语言模型(LLMs)已从技术突破走向产业规模化落地。2025年,全球LLMs进入“模型即服务”(MaaS)时代,参数量级突破万亿级,多模态能力、智能体协作、专业化细分成为主流趋势。中国大模型领域在DeepSeek、通义千问、讯飞星火等头部模型推动下,实现技术突破与场景创新。本报告基于截至2025年7月的最新数据,系统梳理LLMs的技术演进、应用场景、挑战与未来方向。一、大语言模型的演进与突破
- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- 大语言模型:是逐字生成还是一次多词?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython算法prompt人工智能自然语言处理均值算法
大语言模型(LLM)既可以按顺序逐个生成单词(token),也能实现一次生成多个token核心差异源于解码策略与模型架构设计一、常规“逐个生成”模式(基础逻辑)多数入门级演示或简单文本生成中,LLM会默认按“生成一个token→拼接回输入→再生成下一个”的流程,本质是自回归(Auto-Regressive)机制的基础应用。比如用小语言模型续写“今天天气____”:模型先基于“今天天气”预测第一个t
- 免费学中医,这些优质资源不容错过
少林659
零基础学中医免费学中医
零基础学中医,学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts想入门中医却担心成本太高?其实有不少免费又优质的学习资源,问止中医的系列免费课程就是其中的佼佼者,涵盖理论与实操,满足不同学习者的需求。问止中医旗下的精一书院,是免费学中医的绝佳平台。由问止中医联合创始人林大栋博士主讲,课程聚焦中医结构分析、人工智能中医大脑技术
- 微软:LLM训练数据组织框架DELT
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:DataEfficacyforLanguageModelTraining来源:arXiv,2506.21545摘要数据是语言模型(LM)训练的基础。最近的研究一直致力于数据效率,其目的是通过选择训练数据的最小或最优子集来最大限度地提高性能。数据过滤、采样和选择等技术在这一领域起着至关重要的作用。为了补充这一点,我们定义了数据效能,它侧重于通过优化训练数据的组织来最大限度地提高性能,目前尚未得
- 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
司南锤
LLM人工智能
引言在人工智能快速发展的今天,大语言模型(LLM)的推理能力一直是研究的热点。从最初的直接问答,到链式思维(ChainofThoughts,CoT)的出现,再到如今的思维树(TreeofThoughts,TOT),AI的推理方式正在变得越来越接近人类的思维过程。思维树作为一种全新的推理框架,不仅继承了链式思维的优势,更通过树状结构的探索和回溯机制,实现了更加复杂和深入的推理过程。本文将深入探讨TO
- 云原生环境下部署大语言模型服务:以 DeepSeek 为例的实战教程
一ge科研小菜菜
人工智能Python编程语言语言模型人工智能自然语言处理
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、引言随着DeepSeek、Qwen、ChatGLM等大语言模型(LLM)的开放与普及,企业将其私有化部署并服务化的需求愈发迫切。然而,从HuggingFace下载模型,到提供一个结构化、稳定、可调用的API,并不是一个简单过程。它涉及:模型推理框架(如vLLM)的集成;WebAPI封装(FastAPI等);容器化部署与资源调度;可扩展性设计与
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情