- SpringBoot高并发上传下载解决方案
hdsoft_huge
springbootjava后端
这里写目录标题一、引言二、高并发上传下载面临的挑战2.1传统上传下载方式的瓶颈2.2高并发场景下的性能指标要求三、SpringBoot高并发上传下载的架构设计3.1整体架构设计3.2关键组件设计3.2.1负载均衡层3.2.2API网关层3.2.3应用服务层3.2.4存储层3.2.5缓存层3.2.6消息队列四、SpringBoot高并发上传下载的关键技术实现4.1异步非阻塞编程模型4.1.1@Asy
- 数字人矩阵源码--基于深度学习的数字人面部表情合成
我~18339948121
数字人源码数字人矩阵源码123数字人源码矩阵深度学习线性代数人工智能flasktornadopython
AI正在席卷全球,数字人市场需求增长,用AI数字分身一天就能生产出几十条高质量短视频,你只需要上传一段视频,甚至都不用开口说话,直接复制粘贴文案,就能得到一个属于你的数字分身。深度学习数字人面部表情合成的关键技术3D面部建模与参数化建立高精度3D面部模型是表情合成的基础,常用Blendshape或面部动作编码系统(FACS)作为参数化控制方法。Blendshape通过线性组合基础表情形状生成新表情
- 探秘AI的秘密:leaked-system-prompts
人工智能我来了
人工智能AI人工智能
揭秘:揭秘系统提示合集背后的秘密在当今这个人工智能技术迅速发展的时代,了解和使用大型语言模型(LLM)已成为技术爱好者、开发者和研究人员的共同目标。而作为核心组成部分,系统提示(systemprompts)的设计和应用直接影响了LLM的表现和功能。今天,我们将为大家揭示一个神秘而又充满吸引力的项目——“leaked-system-prompts”。这个项目为我们打开了一扇窥探这些大型语言模型系统提
- 打造 AI 产品的前端架构:响应式、流式、智能交互三合一
关键点AI产品前端挑战:AI产品前端需要处理流式响应、上下文管理、多模型切换和复杂的用户交互,同时保证高性能和响应式体验。流式响应:通过Server-SentEvents(SSE)或WebSocket实现实时数据流,提升用户感知的响应速度。多模型切换:支持动态切换AI模型(如GPT-4、Grok),并优化上下文缓存和token预估。会话持久化:通过本地存储或后端数据库保存用户会话,支持编辑和恢复功
- 深入探索 Vanna:让数据库交互更智能
从零开始学习人工智能
数据库交互
深入探索Vanna:让数据库交互更智能在数字化时代,与数据库进行高效交互是许多开发者、数据分析师和企业面临的挑战。传统的SQL查询编写不仅需要对数据库结构有深入的了解,还需要花费大量的时间和精力来调试和优化。Vanna,一个基于Python的开源工具,通过结合检索增强(RetrievalAugmentation)和大型语言模型(LLM),为这一问题提供了一个创新的解决方案。本文将深入探讨Vanna
- asyncio基本用法介绍
遮天华月
python算法
目录一、`asyncio`的核心概念二、`asyncio`的常见用法三、`asyncio`中的同步原语四、`asyncio`中的网络操作五、`asyncio`的调试工具总结asyncio是Python标准库中用于异步编程和并发任务管理的核心库。它的基础是事件循环,用来调度协程(coroutines),让它们能够非阻塞地并发执行。这种编程模型在处理大量I/O密集型任务时非常高效,如网络操作、文件读写
- 引导语言的魔法:从简单指令到智能对话的艺术
步子哥
智能涌现AGI通用人工智能人工智能python机器学习
大型语言模型(LLMs)就像一台精密的预测机器,依靠输入的提示(prompt)生成令人惊叹的输出。然而,撰写一个高效的提示并非易事——它需要科学与艺术的结合。无论是要求模型生成代码、回答问题,还是创作故事,提示的设计决定了输出的质量。本文将深入探讨提示工程(PromptEngineering)的奥秘,带你从基础配置到高级技巧,揭示如何通过精心设计的提示,引导LLMs生成准确、有趣且实用的结果。准备
- 目前最全的国内AI大模型117家名单。。。
AI大模型正在飞速发展,一年多时间国内已有很多大模型公司。前排提示,文末有大模型AGI-CSDN独家资料包哦!这篇文章咱们就来看看,这应该是目前最全面的国内AI大模型及公司名单。第一节是117家AI大模型公司表格;第二节是前20家一个介绍,117个介绍放在一篇中阅读体感差,两个方法:1)PDF阅读;2)在线阅读1AI大模型117家名单117家已备案的AI大模型名称、所属公司、主要应用领域。铁铁们收
- 语言的钥匙:提示工程的艺术与驾驭AI的智慧
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)如GPT-4展现出令人惊叹的通用能力,却又伴随着“幻觉”、“黑箱”和“不可控”等阴影时,一个核心问题变得无比迫切:人类如何有效地与这些庞然大物沟通,引导它们可靠、安全、精准地完成任务?答案并非在于重新训练这头计算巨兽(成本高昂且周期漫长),而在于掌握一门新兴的关键技艺——提示工程(PromptEngineering)。提示工程,简而言之,就是精心设计输入给模型的自然语言指令
- 巨头开源的背后,是价格战还是价值战?
CSDN资讯
开源
当巨头们纷纷开源自家模型,他们背后的博弈是什么?放眼全球,谷歌在发布其王牌模型Gemini2.5Pro时,选择开源其衍生的轻量级模型Gemma,Meta的LLaMA虽名为开源,却始终带着商业限制的“镣铐”……他们小心谨慎地通过开源开放吸引全球开发者的关注,同时却牢牢掌控核心能力与商业变现路径。回到国内,从阿里通义千问全尺寸开源到DeepSeek的一鸣惊人,再到前几天百度开源其主力模型文心4.5。中
- 探索生成式 AI Agent:12类,40+个AI Agent实例应用场景的宝藏库
和老莫一起学AI
人工智能产品经理职场和发展面试自然语言处理ai大模型
在人工智能的璀璨星空中,生成式AI智能体(GenAIAgents)无疑是最耀眼的星辰之一,正以前所未有的速度改变着我们与技术互动的方式。今天,我将分享GitHub上一个宝藏级的项目——“NirDiamant/GenAI_Agents”,这里汇聚了从基础到高级的各种GenAI智能体技术教程与实现案例,堪称一座智能体开发的知识宝库。1.适合初学者的智能体简单会话智能体概览通过集成语言模型、提示模板和历
- VSCode-Copilot的系统提示词
youngqqcn
AIvscodecopilotide
title:VSCode-Copilot系统提示词date:2025-07-0211:05categories:技术tags:AI人工智能LLM大语言模型提示词Microsoft开源了VSCodeCopilotChat,以下是其系统提示词的摘录。https://github.com/microsoft/vscode-copilot-chat/blob/main/src/extension/prom
- ReBEL模型的本地部署与运行,用于三元组抽取任务(事件抽取、知识抽取)
1.服务器CUDA11.72.依赖condacreate-nrebel_envpython=3.10-ycondaactivaterebel_env#安装PyTorch(建议与CUDA11.7配合)pipinstalltorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu117#安装Transformers和
- C#.NET Newtonsoft.Json 详解
c#.net
简介Newtonsoft.Json(又称Json.NET)是.NET生态中最流行的JSON序列化/反序列化库,支持.NETFramework、.NETCore、Mono、Xamarin等多种平台。功能丰富:自动映射对象、LINQtoJSON、JSchema验证、自定义转换、性能可调等核心功能与基础使用序列化与反序列化usingNewtonsoft.Json;//模型类publicclassPers
- SprutCAM 入门级铝板案例仿真
SprutCAMX
数控编程CAM数控机床编程数控机床加工动态仿真
四重风险拦截:动态碰撞检测实时标红刀具干涉深度,过切保护识别,奇异点规避映射关节突变,可达性验证预报警超行程区域,综合拦截率>95%;简单的铝板案例仿真
- 基于改进扩散模型与注意力机制的影像到转基因数据预测系统
基于改进扩散模型与注意力机制的影像到转基因数据预测系统1.项目概述本系统利用改进的扩散模型结合注意力机制,从医学影像中预测转基因数据。系统采用PyTorch框架实现,包含数据预处理、模型架构、训练流程和评估指标等完整模块。importtorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptimfromtorc
- 深入剖析AI大模型:关于模型训练
chilavert318
熬之滴水穿石人工智能
今天说的是模型训练,在AI模型里,它是点亮智慧星辰的关键引擎。今天将围绕开源预训练模型的使用、数据与模型的集成、模型的部署管理,以及大规模模型的可扩展性与效率提升展开,带大家开启一场深入浅出的模型训练实战之旅。一、使用开源预训练模型1、如何利用开源模型(如BERT、GPT)进行微调开源预训练模型就像是已经搭建好框架的摩天大楼,BERT、GPT等模型便是其中声名赫赫的标志性建筑。它们经过海量数据的“
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 微调 || RAG,项目落地怎么选?LLM应用选型指南,适用场景全解析
认知超载
AI人工智能
基本定义微调:是指利用更小、更具针对性的数据集对经过预先训练的大语言模型进一步训练的过程。在这个过程中,模型基于新数据集修改权重和参数,学习特定于任务的模式,同时保留来自最初预训练模型的知识。RAG:即检索增强生成,是将检索大量外部知识的过程与文本生成结合在一起的一种方法。它会从大型外部数据库中检索与输入问题相关的信息,将这些信息作为上下文提供给大语言模型,辅助其生成回答。微调适用场景1.特定领域
- Spring MVC 详解
蟒蛇boy
springmvcjava
在JavaWeb开发中,SpringMVC是一个强大而广泛使用的框架,它为构建高效、可维护的企业级应用提供了坚实的基础。本文将深入介绍SpringMVC,并提供示例代码帮助你更好地理解其工作原理。一、SpringMVC简介SpringMVC是Spring框架的一个模块,全称为SpringWebMVC。它实现了模型-视图-控制器(MVC)设计模式,将应用程序分为三个主要部分:模型(Model)、视图
- Vue简介,什么是Vue(Vue3)?
水云桐程序员
vue.js前端javascript
什么是Vue?Vue是一款用于构建用户界面的JavaScript框架。它基于标准HTML、CSS和JavaScript构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。无论是简单的还是复杂地界面,Vue都可以胜任。声明式渲染:Vue基于标准HTML拓展了一套模板语法,使得我们可以声明式地描述最终输出地HTML和JavaScript状态之间的关系。响应性:Vue会自动跟踪Jav
- ollama v0.9.4 详解:联网功能、模型目录自定义及macOS性能优化全面升级
近年来,随着人工智能技术的快速发展,模型管理与调用变得尤为重要。作为一款备受关注的本地AI模型管理工具,Ollama在最新发布的v0.9.4版本中带来了多项重磅改进和全新功能,提升了用户体验和应用场景的灵活性。本文将深入解析Ollamav0.9.4版本的功能亮点、技术改进以及实用操作指南,帮助广大开发者和AI爱好者全面掌握这款工具的最新动态。一、版本概述Ollamav0.9.4版本于2025年7月
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 从零掌握二叉树序列化:Swift实战详解,让你的树结构飞起来!
网罗开发
Swiftswift开发语言ios
文章目录摘要描述题解答案序列化思路反序列化思路题解代码分析示例测试及结果时间复杂度空间复杂度总结摘要今天咱们来聊聊二叉树的一个经典问题:序列化和反序列化。简单来说,就是把一棵二叉树转换成字符串形式(序列化),然后再把这个字符串还原成原来的二叉树(反序列化)。这个问题在实际开发中特别有用,比如你想把一棵树结构保存到文件里,或者通过网络传输给其他服务,都需要用到这种技术。描述想象一下,你正在开发一个社
- LeetCode - #106 从中序与后序遍历序列构造二叉树
网罗开发
Swift#LeetCodeleetcode算法职场和发展
文章目录前言1.描述2.示例3.答案关于我们前言我们社区陆续会将顾毅(Netflix增长黑客,《iOS面试之道》作者,ACE职业健身教练。)的Swift算法题题解整理为文字版以方便大家学习与阅读。LeetCode算法到目前我们已经更新到105期,我们会保持更新时间和进度(周一、周三、周五早上9:00发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;
- LeetCode - #144 二叉树的前序遍历
网罗开发
Swiftleetcode算法职场和发展
文章目录前言1.描述2.示例3.答案关于我们前言我们社区陆续会将顾毅(Netflix增长黑客,《iOS面试之道》作者,ACE职业健身教练。)的Swift算法题题解整理为文字版以方便大家学习与阅读。LeetCode算法到目前我们已经更新到143期,我们会保持更新时间和进度(周一、周三、周五早上9:00发布),每期的内容不多,我们希望大家可以在上班路上阅读,长久积累会有很大提升。不积跬步,无以至千里;
- 【V5.0 - 视觉篇】AI的“火眼金睛”:用OpenCV量化“第一眼缘”,并用SHAP验证它的“审美”
爱分享的飘哥
AI人工智能opencv计算机视觉
系列回顾:在上一篇《给AI装上“写轮眼”:用SHAP看穿模型决策的每一个细节》中,我们成功地为AI装上了“透视眼镜”,看穿了它基于数字决策的内心世界。但一个巨大的问题暴露了:它的世界里,还只有数字。它能理解“时长60秒”,却无法感受画面的震撼。它是一个强大的“盲人数学家”。计算机视觉我们没有必要为每个视频进行切帧,可以针对开头的视频或者中间关键点视频进行切帧,让计算机识别。承上启下:“现在,我们来
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s