- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 鸿蒙开发(NEXT/API 12)【应用传输体验反馈】 网络加速服务
移动开发技术栈
鸿蒙开发harmonyos网络华为openharmony鸿蒙移动开发鸿蒙系统
场景介绍当应用传输体验发生变化时,应用将传输体验和传输的业务类型信息通过实时反馈接口传输给系统网络业务模块,系统网络业务模块进行精细化调度,实现网络加速。例如:视频类App播放过程中卡顿,将卡顿信息上报后,NetworkBoostKit将信息反馈给系统网络加速模块,该模块会记录播放卡顿信息,并根据当前网络情况,启用网络加速能力。接口说明接口名描述reportQoe(appQoe:AppQoe):v
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- cmake介绍(八)--cmake的高级特性
小蘑菇二号
cmake
目录1.自定义CMake模块和脚本自定义模块示例:创建自定义模块2.构建配置和目标多配置生成器示例:使用VisualStudio生成器定义多个构建目标示例:定义多个目标3.高级查找和配置灵活地查找包示例:查找和配置Boost库配置构建选项示例:配置构建选项4.生成自定义构建步骤添加自定义命令示例:添加自定义命令添加自定义目标示例:添加自定义目标5.跨平台和交叉编译支持不同平台示例:配置跨平台编译交
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- .NET Core —如何使用Redis缓存提高应用程序性能
weixin_26737625
redisjava缓存pythonmysql
Redisisaverypowerfuldistributedcachingengineandoffersverylowlatencykey-valuepaircaching.Ifusedintherightbusinesscontext,Rediscansignificantlyboostapplicationperformance.Inthisarticlewewilldoawalkthrou
- Python处理大数据,如何提高处理速度
RS&
#pythonpython大数据pandas
Python处理大数据,如何提高处理速度?一、利用大数据分析工具Dask:https://dask.org/Dask简介:Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。Dask可支持pandas、Numpy、Sklearn、XGBoost、XArray、RAPIDS等等。原理及使用方法:https://blog.
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 英伟达A100算力卡性能及应用
算力资源比较多
算力英伟达大模型人工智能gpu算力语言模型大数据推荐算法
英伟达A100是一款高性能计算卡,基于英伟达Ampere架构,专为数据中心和高性能计算领域设计。以下是关于A100的性能参数及应用的详细介绍:性能参数架构与制程:架构:Ampere制程:7纳米核心与频率:CUDA核心数:6912个Tensor核心数:432个Boost时钟频率:1.41GHz性能:FP32性能:19.5TFLOPSFP64性能:9.7TFLOPSTensor性能:624.6TFLO
- 2024年Python最新Python爬虫教程-新浪微博分布式爬虫分享(2)
2401_84584682
程序员python爬虫新浪微博
开发语言:Python2.7开发环境:64位Windows8系统,4G内存,i7-3612QM处理器。数据库:MongoDB3.2.0、Redis3.0.501(Python编辑器:Pycharm;MongoDB管理工具:MongoBooster;Redis管理工具:RedisStudio)爬虫框架使用Scrapy,使用scrapy_redis和Redis实现分布式。分布式中有一台机充当Maste
- XGBoost调参demo(Python)
妄念驱动
机器学习算法python机器学习XGBoostpython
XGBoost我们用的是保险公司的一份数据#各种库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.metricsi
- 【python】Python实现XGBoost算法的详细理论讲解与应用实战
景天科技苑
python轻松入门基础语法到高阶实战教学python算法开发语言XGBoost算法XGBoostpython实现XGBoost人工智能
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,PyQt5和Tkinter桌面开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生K
- VScode C++ 一键注释
东半球第一攻城狮
vscodec++ide
1.注释:首选选中要注释的部分;intmain(){usingnamespacestd;cout>weight;stringgain="A10%increaseraises";stringwt=boost::lexical_cast(weight);gain=gain+wt+"to";//stringoperator()weight=1.1*weight;gain=gain+boost::lexi
- mac版QQ聊天信息备份与导出方法
iHTCboy
前言最近,我司终于更换新电脑的计划落实啦!!!Macmini3.0GHz双核IntelCorei7处理器(TurboBoost高达3.5GHz)16GB1600MHzLPDDR3SDRAM1TB融合硬盘IntelIrisGraphics图形处理器非常值的可贺!然而,就是新电脑,一切都是新!一切都是白!!非常多工具的数据需要迁移,开发环境需要配置,最近也打算总结一下新电脑配置方面的文章,作为自己备份
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- SD3337C 恒流Boost DC/DC转换器的白色LED驱动器芯片IC
奥科迪科技13798477800
单片机嵌入式硬件
一般描述SD3337C是一款升压型DC/DC转换器,具有恒定电流,可驱动白色LED或类似器件。该器件可以从锂离子电池驱动多达八个串联的LED。LED电流由外部电阻器(RsET)设置,并由反馈(FB)电压(典型值:200mV)直接调节,该电压跨接在外部电阻器RsET上。为了确保操作过程中的最大安全性,该输出具有集成的过压保护功能,可在某些故障条件下防止设备损坏。OVP电压可以通过两个外部电阻器进行编
- hiphop-php【未能成功编译YII】
zhengdl126
linux运维php运维git
==================测试环境redhat6.064bitcmake2.6istheminimumversiong++/gcc4.3istheminimumversionBoost1.37istheminimumversionlibicu4.2istheminimumversiontbbIntel'sThreadBuildingBlocks===64bit====https://gi
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- ZCC5429 异步升压芯片
ZCWC123
社交电子
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- ZCC5429 异步升压芯片
ZCWC123
社交电子
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- ZCC5429-宽输入电压异步升压芯
HPT_Lt
嵌入式硬件
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- 3.0 V-22V 宽输入电压,高效率异步升压芯片-ZCC5429
HPT_Lt
嵌入式硬件
一、产品综述ZCC5429芯片是一款自动调频、最高600KHz工作频率、高效率、宽输入电压范围的电流模式异步升压(BOOST)芯片,且可调输入限流功能。用户可灵活地通过外部补偿建立动态环路,获得在所有条件下最优瞬态性能。ZCC5429芯片还包括欠压锁存,过流保护和过温保护,以防止在输出过载时产生损害。ZCC5429采用ESOP8小型封装,外围电路简单,功率管外置,可根据实际使用情况,实现更宽功率范
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- 随机森林(Random Forest)VS 提升树(Boosting Trees)
高大黑白涂鸦
随机森林boosting算法机器学习人工智能
随机森林(RandomForest)和提升树(BoostingTrees)都是常见的机器学习算法,它们都基于决策树,但使用的策略和目标不同。随机森林(RandomForest)通俗的类比:想象你有一个班级里的多位老师(决策树),你让他们每个人都独立地给出意见(预测)。每个老师的意见可能不完全一致,因为他们对问题的理解和方法不同。然后,你把所有老师的意见汇总,得到一个“班级意见”的结果。优点:减少过
- 英伟达A100、A800、H100、H800、V100以及RTX 4090的详细性能参数对比
算力资源比较多
算力英伟达H100gpu算力大数据人工智能语言模型
英伟达A100、A800、H100、H800、V100以及RTX4090的详细性能参数对比:英伟达A100架构与制程:架构:Ampere制程:7纳米核心与频率:CUDA核心数:6912个Tensor核心数:432个Boost时钟频率:1.41GHz性能:FP32性能:19.5TFLOPSFP64性能:9.7TFLOPSTensor性能:624.6TFLOPS内存:显存容量:提供40GB和80GBH
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那