- Python可视化环境:Matplotlib_Seaborn+Conda配置
Python编程之道
Python人工智能与大数据Python编程之道pythonmatplotlibcondaai
Python可视化环境:Matplotlib/Seaborn+Conda配置关键词:Python可视化、Matplotlib、Seaborn、Conda、环境配置摘要:本文主要探讨了如何利用Conda来配置Python可视化所需的Matplotlib和Seaborn环境。首先介绍了Python可视化的背景和重要性,明确目标读者为想要学习Python可视化的初学者和有一定基础的开发者。接着详细解析了
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 深入详解:决策树算法的概念、原理、实现与应用场景
猿享天开
算法决策树机器学习
深入详解:决策树算法的概念、原理、实现与应用场景决策树(DecisionTree)是机器学习中一种直观且广泛应用的监督学习算法,适用于分类和回归任务。其树形结构易于理解,特别适合初学者。本文将从概念、原理、实现到应用场景,全面讲解决策树,并通过流程图和可视化示例增强理解,通俗易懂,帮助小白快速掌握决策树算法相关知识。1.决策树的概念1.1什么是决策树?决策树通过一系列条件判断(决策节点)将输入数据
- 区块链技术概述:从比特币到Web3.0
闲人编程
Python区块链50讲区块链web3python元宇宙比特币安全
目录区块链技术概述:从比特币到Web3.0引言:数字革命的下一篇章1.区块链技术基础1.1区块链定义与核心特征1.2区块链数据结构可视化2.比特币:区块链的开端2.1比特币的核心创新2.2比特币交易生命周期3.以太坊与智能合约革命3.1以太坊的核心创新3.2智能合约执行流程4.Web3.0:互联网的新范式4.1Web3.0的核心特征4.2Web3技术栈5.Python实现简易区块链系统5.1区块类
- 推荐使用:Vue-Cron —— 简易CRON表达式生成器
乌昱有Melanie
推荐使用:Vue-Cron——简易CRON表达式生成器项目地址:https://gitcode.com/gh_mirrors/vu/vue-cronVue-Cron是一款专为Vue.js和Element-UI设计的高效、易用的CRON表达式生成插件。它能帮助开发者轻松创建和管理定时任务策略,提供直观的界面和完善的国际化支持。项目介绍Vue-Cron提供了一个简洁的交互界面,让用户能够通过可视化的操
- DeepSeek-V3混合精度推理(FP8/BF16)原理与实战全解析
CarlowZJ
DEEPSEEK-V3
目录摘要混合精度推理的背景与意义DeepSeek-V3混合精度架构设计FP8与BF16核心原理详解混合精度推理核心实现实践案例:FP8权重转BF16与推理部署常见问题与注意事项最佳实践与扩展建议总结参考资料附录:可视化图表1.摘要本文系统梳理DeepSeek-V3在FP8/BF16混合精度推理方面的架构设计与工程实现,结合源码与实际案例,帮助开发者深入理解其混合精度推理原理、工程落地方法与性能优化
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- Android Studio Profiler:性能优化的超能侦探
你一身傲骨怎能输
Android操作系统androidstudio性能优化android
文章摘要AndroidStudioProfiler是开发者的"超级监工",通过可视化方式监测APP性能问题:CPU侦探:记录方法调用栈与耗时,定位卡顿根源,如同工厂摄像头追踪机器效率;内存侦探:监控对象分配与GC活动,揪出内存泄漏,像仓库管理员清点过期库存;网络侦探:分析请求速度与数据量,优化传输效率,堪比物流中心调度运输车辆。三大工具协同工作,帮助应用实现更流畅、稳定、高效的运行表现。(注:能耗
- 数据与ChatBI
ChatBI的核心是让用户用自然语言(如“帮我看看这周的销售额走势”)直接获取数据分析结果,无需懂SQL或技术细节。整个过程就像AI“听懂”你的话、理解需求、生成查询、验证执行、并可视化展示结果。首先,ChatBI的系统架构图展示了整个流程的关键步骤。它从用户输入开始,经过多个AI模块处理,最终输出交互式报表。现在来一步步解析ChatBI的工作流程。1.语音/文字输入——解放双手的起点这是什么?一
- ECharts 数据集(Dataset)
沐知全栈开发
开发语言
ECharts数据集(Dataset)引言ECharts是一个使用JavaScript实现的开源可视化库,它能够将数据通过丰富的图表形式展示出来。在ECharts中,数据集(Dataset)是一个非常重要的概念,它负责存储图表所需的数据。本文将详细介绍ECharts数据集(Dataset)的相关知识,包括其定义、作用、类型以及使用方法。数据集的定义数据集(Dataset)是ECharts中用于存储
- 创意Python爱心代码分享的技术文章大纲
hshaohao
pygamepythonjavaphpc++c语言javascript
创意Python爱心代码分享的技术文章大纲引言介绍Python在创意编程中的应用,特别是图形和数学可视化方面的潜力。提及爱心代码作为经典示例,激发读者兴趣。基本爱心图案生成使用数学公式和简单图形库绘制基本爱心形状。示例代码利用matplotlib或turtle库实现。importnumpyasnpimportmatplotlib.pyplotaspltt=np.linspace(0,2*np.pi
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- 几款实用的开发软件SQLyog/xftp/redis可视化工具无需激活
qq_21422587
mysqlSQLyogredis可视化ftp
SQLyog可视化界面:提供直观的GUI操作数据库,减少命令行使用跨平台支持:支持Windows和Linux操作系统强大的查询功能:内置SQL查询编辑器,支持语法高亮和自动完成数据导入导出:支持多种格式的数据导入导出数据库同步:可以比较和同步不同数据库之间的结构和数据可视化工具:提供表结构设计器、视图设计器等可视化工具SSH隧道支持:可以通过SSH安全连接远程数据库SQLyog如有需要请自行下载x
- 使用VTK还是OpenGL集成到qt程序里哪个好?
奇树谦
VTKqt开发语言
在Qt程序中集成VTK与OpenGL:选择哪个更好?在Qt程序中实现三维可视化时,开发者常常面临一个选择:是使用VTK(VisualizationToolkit)还是OpenGL(OpenGraphicsLibrary)。这两种技术各有优缺点,适用于不同的应用场景。本文将详细探讨它们的特点、优缺点以及如何选择适合你的项目的技术。一、VTK与OpenGL简介(一)VTK(VisualizationT
- 【蓝图】p36-p39蓝图通信、自定义事件、类型转换、角色移动速度、触发加速
叫我六胖子
UE4入门教程ue4
p36-p39蓝图通信、自定义事件、类型转换、角色移动速度、触发加速p36蓝图通信和自定义事件蓝图通信自定义事件p37类型转换加速功能类型转换p38创建自定义事件p39实现触发加速p36蓝图通信和自定义事件蓝图通信在UnrealEngine(UE)中,蓝图通信是指蓝图之间的信息传递和交互过程。蓝图是UE中用于创建游戏逻辑和功能的可视化编程工具,而蓝图通信允许不同蓝图之间发送和接收数据。蓝图通信可以
- 流程管理系统技术选型避坑指南(含开源)
Alex艾力的IT数字空间
开源java网络中间件gitidevscode
一、开源流程引擎方案以下为基于BPMN2.0标准的开源方案,覆盖轻量级到企业级需求:引擎名称核心特点适用场景技术栈社区活跃度官网Camunda-完整BPMN/DMN/CMMN支持-可视化流程设计器-分布式架构支持高并发复杂业务流程(金融、制造业)Java/SpringBoot/微服务高camunda.comFlowable-Activiti分支,性能优化-支持云原生部署-与Spring生态深度集成
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 高中成绩可视化平台开发笔记
一半不眠次日si记
笔记pyqtnumpypandasmatplotlibui数据可视化
高中成绩可视化平台(1)一、项目概述本系统是一个基于PyQt5和Matplotlib的高中成绩数据可视化分析平台,旨在帮助教师快速了解学生成绩分布、班级对比、学科表现等关键指标。平台支持文科与理科的数据切换,并提供多个维度的图表展示和交互式操作。核心功能:文科/理科数据动态切换四个核心分析页面(总览、学科分析、班级分析、排名分析)图表联动刷新机制表格与图表双向绑定自定义样式与视觉美化二、技术选型技
- Gitea 服务器监控面板的搭建
shengyin714959
笔记最高笔记服务器gitea数据库
Prometheus是一个开源的服务监控系统和时序数据库。Grafana是一个可视化的数据分析面板,它可以从Prometheus中查询时序数据,绘制漂亮的数据图表。本文作者在实践中使用Prometheus抓取和存储Gitea服务器的运行数据,并基于Grafana提供的开源数据面板创建了一个自己服务器的Gitea性能监控面板。工作原理为了更清晰地理解Prometheus的工作原理,我在下方列出了Pr
- KVM虚拟化CPU拓扑解密:核心数越多性能就越强?真相颠覆认知!
来自于狂人
后端云计算
在虚拟化环境中,CPU配置如同精密仪器的齿轮系统,错误的拓扑设计可能导致30%以上的性能损失!本文将用可视化方式揭示KVM中CPU拓扑的深层奥秘。一、CPU拓扑核心概念图解层级架构解析:物理服务器Socket1Socket2Core1Core2Core1Core2Thread1Thread2Thread1Thread2Thread1Thread2Thread1Thread2Socket(插槽)物理
- 国产中子输运与辐射防护常用建模计算可视化软件推荐
Dahoo009
TopMCSuperMC蒙特卡罗方法MCNPGeant4
以下是国产中子输运与辐射防护领域主流的建模计算与可视化软件推荐,覆盖自主研发的蒙特卡洛工具、确定论方法平台及专用辅助软件,满足科研、核能与医疗等领域的安全分析需求:️一、核心国产模拟软件1.蒙特卡洛中子输运工具软件名称开发单位特点适用场景TopMC/SuperMC(超级蒙特卡洛)中子科学研究院(FDSTeam)✅自主可控核设计软件✅支持中子/光子/质子耦合输运✅智能建模+云平台集成✅兼容MCNP输
- Mac电脑 数据恢复工具 Disk企业版
2501_92605049
macosmac数据恢复
Disk一款专为MacOS原生设计的Mac数据恢复工具:使用RecoveryVault轻松保护您的文件免遭意外删除,并从Mac磁盘恢复丢失的数据。支持大多数存储设备、文件类型和文件系统。您可以从iPhone和Android设备恢复已删除的文件!DiskDrill提供有用且免费的磁盘管理工具,例如重复文件查找器、字节到字节备份、磁盘清理和空间可视化、可启动数据恢复驱动器、磁盘运行状况监控等。原文地址
- 《C#上位机开发从门外到门内》3-5:基于FastAPI的Web上位机系统
百锦再@新空间
上位机开发fastapi前端数据库centosoracle关系型安全
文章目录一、项目概述二、系统架构设计三、前后端开发四、数据可视化五、远程控制六、系统安全性与稳定性七、性能优化与测试八、实际应用案例九、结论随着互联网技术的快速发展,Web上位机系统在工业自动化、智能家居、环境监测等领域的应用日益广泛。基于FastAPI或Flask的Web上位机系统,凭借其高效、灵活和易于扩展的特点,成为当前研究和应用的热点。本文将详细探讨基于FastAPI和Flask的Web上
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- 解锁ChatGPT高级玩法:模块化提示词库开发指南
LCG元
大模型chatgpt
目录一、引言:为什么需要模块化提示词库?二、模块化提示词库设计原理2.1核心架构2.2模块功能说明⚙️三、模块化提示词库开发实践(附Python源码)3.1环境配置3.2模块化提示词生成器3.3提示词组合引擎四、可视化流程设计4.1模块化提示词工作流4.2可视化编辑界面设计五、应用案例:电商客服提示词库5.1模块配置示例5.2效果对比六、总结与资源一、引言:为什么需要模块化提示词库?传统单一提示词
- 大屏可视化制作指南
万能小贤哥
信息可视化3d人工智能
一、大屏可视化概述(一)概念大屏可视化是指通过大屏幕展示复杂数据的视觉呈现形式,它借助图形、图表、地图等元素,将海量数据以直观易懂的方式呈现出来,帮助用户快速理解数据背后的含义和价值。(二)应用场景监控中心:如交通监控中心、城市管理监控中心等,实时展示交通流量、城市运行状态等信息。指挥中心:在应急指挥、军事指挥等场景中,为指挥人员提供全面的信息支持。数据展示:企业展厅、科技馆等场所,用于展示企业业
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- ROS系列(三):从零构建机器人通信系统 --- 包创建+发布订阅+Launch实战 & RViz/rqt可视化利器拆解!
引言机器人操作系统(ROS)的核心在于其模块化通信架构与高效的开发流程。本指南直击ROS开发的核心技术环节,助你快速构建功能节点并实现系统集成。你将从理解工作空间(catkin_ws)这一代码与编译的容器开始,掌握使用catkin_create_pkg创建功能包(Package)的方法,并深入关键配置文件CMakeLists.txt与package.xml的作用。核心在于编写节点(Node):通过
- Python发送天气预报到企业微信解决方案
会飞的土拨鼠呀
Python学习python企业微信开发语言
Python发送天气预报到企业微信解决方案下面是一个完整的Python解决方案,可以将今日天气信息和未来天气趋势图发送到企业微信。这个方案使用免费天气API获取数据,生成可视化图表,然后通过企业微信机器人发送消息。importrequestsimportjsonimportmatplotlib.pyplotaspltimportmatplotlib.datesasmdatesimportdatet
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc