HDU4612 Warm up 边双连通分量&&桥&&树直径

题目的意思很简单,给你一个已经连通的无向图,我们知道,图上不同的边连通分量之间有一定数量的桥,题目要求的就是要你再在这个图上加一条边,使得图的桥数目减到最少。

首先要做的就是找出桥,以及每个点所各自代表的连通分量。 找桥的方法就是经典的low[u],pre[v]的判断,这个在大白书上也有比较详尽的介绍。当我们找到桥之后我们当然要把桥边存起来,存的时候就有很多姿势了,因为题目给的点达到200000的级别,所以肯定不能开一个邻接矩阵,所以存的时候要么就开个vector<Edge>存下所有的桥边,但是遍历索引的时候就会很蛋疼。要么就采用另外一种方法,vector<int> P[i],其中P[i]这个vector里存下了所有的与i相连构成桥边的点,也就是P[i][j]和i之间存在桥。 

找完桥之后就是找边双连通分量。按照大白书上的说法,第一遍dfs找桥,第二遍dfs只需要跳过所有的桥边dfs就可以找到属于同一个边双连通分量的点了。所以当你要判断由u能不能dfs到v的时候,只需要判断(u,v) 是不是桥,也就是v在不在P[i]里,在的话则跳过。

当我们做完上述操作的时候,我们就可以求出了各自点代表的连通分量了。这个时候我们就重新缩点构图,处于同一个边双连通分量内的点缩成一个点,那么最后什么边会是新图上的边呢? 根据性质我们可以知道,只有桥才是新图上的边,这个时候我们存储的P[i]就派上大用途了,因为P[i][j]和i各自处于的双连通分量中存在边,所以根据P数组和bccno就可以建出新的图。

建出新的图之后就是关于如何实现减少桥边的问题了。不难发现,当前的图是一棵树(这是自然的吧),所以树上的每一条边都是桥,当我们加了一条边之后,就会形成环,这个环所在的所有点这时候又缩成一个点,换言之,环上的桥边减少了。显然我们要选的就是新图上最长的链。

树的最长链就是树的直径。找直径的方法可以考虑采取树dp(我之前的挫办法),也可以用两次BFS,随便选一个点BFS,BFS到的最后一个点一定是直径的一端,然后再从这个点BFS,BFS到的最后一个点必然也是直径的一端。但是BFS写起来没有DFS版本的快,DFS就是随便选一点dfs,dfs到的深度最大的点是直径的一端,从那一个点再dfs一次,深度最大的那个点就是直径的另一端,这时这个点的深度dep-1就是最长链的长度。

最后输出的答案就是桥的数量-最长链的长度,桥的数量就是树的点-1 也就是 bcc_cnt-1, 最长链的长度是dep-1,所以最后的答案就是bcc_cnt-dep

下面的代码严重的参(chao)考(xi)了这个网址,感谢大神们的博客让我得到长足的进步:

http://www.cnblogs.com/arbitrary/archive/2013/08/04/3236092.html

#pragma warning(disable:4996)

#pragma comment(linker,"/STACK:102400000,102400000")

#include<cstring>

#include<string>

#include<cstdio>

#include<algorithm>

#include<vector>

#include<cmath>

#include<iostream>

#define maxn 200050

using namespace std;



struct Edge

{

	int u, v;

	Edge(){}

	Edge(int ui, int vi) :u(ui), v(vi){}

};



vector<int> G[maxn+50];

vector<Edge> edges;

vector<int> P[maxn + 50]; // 桥点邻接表

int n,m;



int low[maxn + 50];

int pre[maxn + 50];

int dfs_clock;



int dfs(int u, int fa)

{

	int lowu = pre[u] = ++dfs_clock;

	for (int i = 0; i < G[u].size(); i++){

		int mm = G[u][i];

		if (fa == (mm ^ 1)) continue;

		int v = edges[mm].v;

		if (!pre[v]){

			int lowv = dfs(v, mm);

			lowu = min(lowu, lowv);

			if (lowv>pre[u]){

				P[u].push_back(v);

				P[v].push_back(u);

			}

		}

		else if (pre[v] < pre[u]){

			lowu = min(lowu, pre[v]);

		}

	}

	return low[u] = lowu;

}



int bccno[maxn + 50];

int bcc_cnt;

void dfs_bcc(int u)

{

	bccno[u] = bcc_cnt;

	for (int i = 0; i < G[u].size(); i++){

		int mm = G[u][i];

		int v = edges[mm].v;

		if (bccno[v]) continue;

		bool flag = true;

		for (int j = 0; j < P[u].size(); j++){

			if (v == P[u][j]) {

				flag = false;

				break;

			}

		}

		if (!flag) continue;

		dfs_bcc(v);

	}

}



void find_bcc()

{

	memset(low, 0, sizeof(low));

	memset(pre, 0, sizeof(pre));

	dfs_clock = 0;

	memset(bccno, 0, sizeof(bccno));

	bcc_cnt = 0;

	for (int i = 1; i <= n; i++){

		if (!pre[i]) dfs(i, -1);

	}

	for (int i = 1; i <= n; i++){

		if (!bccno[i]){

			bcc_cnt++;

			dfs_bcc(i);

		}

	}

}



vector<int> NG[maxn + 50];

int dep[maxn + 50];

void ndfs(int u, int depth)

{

	dep[u] = depth;

	for (int i = 0; i < NG[u].size(); i++){

		int v = NG[u][i];

		if (!dep[v]) ndfs(v, depth + 1);

	}

}



void constructNG()

{

	for (int i = 0; i <= bcc_cnt; i++){

		NG[i].clear();

	}

	for (int i = 1; i <= n; i++){

		for (int j = 0; j < P[i].size(); j++){

			int v = P[i][j];

			NG[bccno[i]].push_back(bccno[v]);

		}

	}

}



int main()

{

	while (cin >> n >> m&&(n||m))

	{

		for (int i = 0; i <= n; i++) G[i].clear(), P[i].clear();

		edges.clear();

		int u, v;

		for (int i = 0; i < m; i++){

			scanf("%d%d", &u, &v);

			edges.push_back(Edge(u, v));

			G[u].push_back(edges.size() - 1);

			edges.push_back(Edge(v, u));

			G[v].push_back(edges.size() - 1);

		}

		find_bcc();

		constructNG();

		memset(dep, 0, sizeof(dep));

		ndfs(1, 1);

		int mxdep = 0; int mdp=0;

		for (int i = 1; i <= bcc_cnt; i++){

			if (dep[i] > mxdep){

				mdp = i; mxdep = dep[i];

			}

		}

		memset(dep, 0, sizeof(dep));

		ndfs(mdp, 1);

		mxdep = 0;

		for (int i = 1; i <= bcc_cnt; i++){

			if (dep[i] > mxdep) mxdep = dep[i];

		}

		printf("%d\n", bcc_cnt-mxdep);

	}

	return 0;

}

 

你可能感兴趣的:(HDU)