- Python列表与元组的深度剖析
jijihusong006
程序pythonwindows开发语言
Python列表与元组的深度剖析:从底层实现到应用场景的全方位对比一、核心差异概览Python教程https://pan.quark.cn/s/7cefe3163f45传送代资料库https://link3.cc/aa99特性列表(List)元组(Tuple)可变性可变(Mutable)不可变(Immutable)语法表示方括号[]圆括号()内存占用较大(动态数组结构)较小(静态数组结构)哈希支持
- 最大公因数与最小公倍数的关系(公式推导)
Geometry Fu
最大公因数最小公倍数
最大公因数与最小公倍数公式概览a,ba,ba,b的最小公倍数lcm(a,b)lcm(a,b)lcm(a,b)a,ba,ba,b的最大公因数gcd(a,b)gcd(a,b)gcd(a,b)a,b,ca,b,ca,b,c的最小公倍数lcm(lcm(a,b),c)lcm(lcm(a,b),c)lcm(lcm(a,b),c)(二者先求最小公倍数,结果与第三个数求最小公倍数)a,b,ca,b,ca,b,c的
- ElasticSearch-7.17.10集群升级至ElasticSearch-7.17.24
程序终结者
elasticsearchelasticsearch大数据
文章目录集群概览主机名系统版本es01CentOS_7.6-aaarch64ElasticSearch-7.17.10es02CentOS_7.6-aaarch64ElasticSearch-7.17.10es03CentOS_7.6-aaarch64ElasticSearch-7.17.10需求1.将三台ES节点从ElasticSearch-7.17.10升级至ElasticSearch-7.1
- Android 使用MediaPlayer播放音频详解
吴硼
androidjava
目录一、官方资料二、简单介绍三、MediaPlayer使用1.创建MediaPlayer实例2.重要API3.状态图4.代码5.常用API6.辅助效果总结一、官方资料MediaPlayer概览https://developer.android.google.cn/guide/topics/media/mediaplayer?hl=zh_cnMediaPlayer文档https://develope
- 前端架构师具备什么能力?前端性能优化全链路指南
kerwin_1727
前端架构师具备什么能力前端性能优化
前端性能优化全链路指南——从构建到运行,让你的页面飞起来!一、性能优化全链路概览性能优化不是“一招鲜”,而是从构建时到运行时的全流程优化。以下是核心链路:构建时:减少打包体积(TreeShaking、CodeSplitting)。加载时:加速资源加载(懒加载、预加载)。运行时:提升渲染效率(虚拟列表、WebWorker)。监控与诊断:用工具定位问题(ChromePerformance、Lighth
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- 学习pytorch
阿什么名字不会重复呢
学习pytorch人工智能
学习PyTorch是一个很好的选择,尤其是如果你对深度学习和机器学习感兴趣。以下是一个详细的学习计划,可以帮助你系统地掌握PyTorch的基本概念和应用。学习计划概览学习周期:8周(每周约4-5小时)目标:掌握PyTorch基础,能够实现简单的深度学习模型。第1周:基础知识目标:了解深度学习的基础知识,掌握Python和NumPy基础。任务:学习Python基础(数据类型、控制流、函数、类)。资源
- Python物联网与传感器数据分析
master_chenchengg
pythonpython办公效率python开发IT
Python物联网与传感器数据分析开场白:连接物理世界与数字宇宙物联网的魅力:让物体开口说话Python:编织万物互联的魔法传感器:感知世界的触角数据捕获:从现实世界到数字领域传感器类型概览:温度、湿度、光照及其他Python与硬件接口:树莓派的奇妙旅程实时数据流:如何捕捉每一刻的变化数据处理:挖掘数字宝藏的秘密数据清洗:让数据焕发光彩数据分析:揭秘模式与趋势异常检测:识别噪声与干扰可视化展示:讲
- doris:安全概览
向阳1218
大数据doris
oris提供以下机制管理数据安全:身份认证:Doris支持用户名/密码与LDAP认证方式。内置认证:Doris内置了用户名/密码的认证方式,可以自定义密码策略;LDAP认证:Doris可以通过LDAP服务集中管理用户凭证,简化访问控制并增强系统的安全性。权限管控:Doris支持基于角色的访问控制或继承Ranger实现集中化的权限管理。基于角色的访问控制(RBAC),Doris可以根据用户角色与权限
- Webpack 前端性能优化全攻略
北辰alk
前端vue前端webpack性能优化
文章目录1.性能优化全景图1.1优化维度概览1.2优化效果指标2.构建速度优化2.1缓存策略2.2并行处理2.3减少构建范围3.输出质量优化3.1代码分割3.2TreeShaking3.3压缩优化4.运行时性能优化4.1懒加载4.2预加载4.3资源优化5.高级优化策略5.1持久化缓存5.2模块联邦5.3性能分析6.优化效果验证6.1构建速度分析6.2性能监控7.最佳实践总结7.1优化策略7.2持续
- cv32e40p系列0--概览
CDerL
cv32e40prisc-vcv32e40p
代码链接cv32e40p系列文章概览cv32e40p系列<1>cv32e40p_top.svcv32e40p_top模块是基于RISC-V架构的CV32E40P核心的顶层模块,这是一个高性能的32位嵌入式处理器。这个模块的参数和I/O信号定义在配置和接口核心中起着至关重要的作用。参数COREV_PULP:启用PULPISA扩展。这包括自定义的CSR和硬件循环功能,但不包括cv.elw指令。CORE
- Umi-OCR 使用与安装教程
平依佩Ula
Umi-OCR使用与安装教程项目地址:https://gitcode.com/gh_mirrors/um/Umi-OCR1.项目目录结构及介绍Umi-OCR的项目结构精心组织,以支持其多方面功能。以下是主要组成部分的概览:Umi-OCR├──Umi-OCR.exe#主执行文件,Windows平台上直接运行的程序├──umi-ocr.sh#Linux上的启动脚本└──UmiOCR-data├──ma
- openssl TLS 单向认证
spring*-*
网络服务器运维
下面是一个简单的C语言程序示例,它展示了如何使用OpenSSL来实现基于TLS的加密TCP通信。这个程序包括一个服务器和一个客户端,它们通过TLS加密的TCP连接进行通信。步骤概览初始化OpenSSL库。创建SSL上下文(SSL_CTX)。在服务器端,加载服务器证书和私钥;在客户端,加载CA证书。使用SSL套接字进行加密通信。服务器端代码c复制代码#include#include#include#
- 【云原生】深入浅出 K8s 设备插件技术(Device Plugin)
碣石潇湘无限路
kubernetes容器云原生
摘要:Kubernetes提供了DevicePlugin机制,用于向kubelet上报硬件信息并配置容器资源。本文以NVIDIAGPUPlugin为例,通俗易懂并深入浅出地剖析注册、ListAndWatch、Allocate及kubelet管理流程,介绍常见问题和配置要点。先用一张原理概览图把DevicePlugin和kubelet之间的交互勾勒出来,让大家感受下插件技术的整体架构(示例以NVID
- 【奇点时刻】通义千问开源QwQ-32B技术洞察报告(扫盲帖)
碣石潇湘无限路
开源人工智能
以下报告将基于今天各大社区对Qwen/QwQ-32B(下文简称「QwQ-32B」)模型的讨论、测评与实测体验进行综合性分析与洞察。本报告将从模型背景与定位、核心技术、性能表现与对比、部署与使用方式,以及未来潜力与可能的影响五个维度,帮助读者更好地了解这一新兴且备受瞩目的开源推理模型。一、模型背景与定位1.发布方与家族概览QwQ-32B模型由阿里巴巴(Alibaba)旗下的Qwen团队推出,属于Qw
- 探索Pydoll:基于Python的无驱动浏览器自动化新星
几道之旅
人工智能智能体及数字员工python自动化人工智能
在当今Web自动化与数据抓取领域,基于Chromium的工具层出不穷,但大多数方案依赖WebDriver或额外的浏览器插件。Pydoll作为一款新兴的Python库,以无驱动架构和原生异步支持迅速成为开发者关注的焦点。本文将从技术原理、核心功能、应用场景及实战案例多角度解析这一工具。一、Pydoll项目概览Pydoll由开发者thalissonvs等团队维护,旨在通过Python实现对Chromi
- 【超全总结】JMeter vs K6 vs Locust,性能测试工具终极对比!
软件测试jmeter测试工具
引言在现代软件开发中,性能测试是保障系统稳定性和高并发能力的关键环节。然而,面对市面上众多的性能测试工具,我们该如何选择?今天,我们将对JMeter、K6、Locust进行全面对比,帮你找到最适合你的工具!1.工具概览工具语言适用场景优点缺点JMeterJava传统性能测试、WebAPI测试功能强大、插件丰富、支持GUI学习曲线陡峭,资源消耗大K6JavaScript现代DevOps、CI/CD集
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- 并发编程--进程间通信(IPC)概览以及匿名管道
k要开心
进程并发编程c语言开发语言
进程间通信(IPC)概览以及匿名管道1.进程间通信(IPC)概览2.匿名管道PIPE2.1基本逻辑2.2函数接口2.3管道的读写特性2.4管道的阻塞特性1.进程间通信(IPC)概览在Linux/Unix系统中,进程间通信方式(Inter-ProcessComunication)通常有如下若干中方式:管道匿名管道pipe:适用于亲缘关系进程间的、一对一的通信具名管道fifo:适用于任何进程间的一对一
- Google Filament 渲染引擎(2)-Backend 核心类介绍
力博荣三维可视化
图形学基础渲染引擎falament
GoogleFilament渲染引擎(2)-Backend核心类介绍阅读说明:本文基于filament版本:v1.58.0文本更加阐述Backend内部核心类的关系,示例代码作了非常多的删减和简化文本将以创建纹理为例,阐述Backend内部的流程。后端图形接口以OpenGL为例。核心类的功能概览:Dispatcher:本质上只是一个函数指针的集合,用于将命令与驱动接口的方法绑定。在初始化阶段,这些
- harmony OS NEXT-音频录制与播放模块
遇到困难睡大觉哈哈
音视频harmonyos华为鸿蒙
HarmonyOS音频录制与播放模块1.模块功能概览麦克风权限动态检测与申请音频录制功能(支持参数配置)音频波形实时可视化(暂时未完善,先凑合看,后续会完善)录音文件播放功能2.权限检测流程1.代码实现asynccheckPermission(){constmanager=abilityAccessCtrl.createAtManager();//首次权限申请constresult=awaitma
- 揭秘Prompt Engineering 提示词工程(附学习文档)
LLM.
prompt人工智能ai大模型大模型提示词工程大语言模型LLM
PromptEngineering概览何为Prompt在自然语言处理领域,尤其是与大型语言模型(LLM)互动时,Prompt起着至关重要的作用。形象地说:LLM是金矿:大型语言模型如同深藏不露的金矿,蕴藏着巨大的知识与创造力潜力。Prompt是钥匙:而Prompt,则是开启这座金矿的钥匙。通过精心设计的问题或指令(Prompt),我们能引导模型产生特定的、有价值的输出,如文章创作、代码编写、问题解
- 差分革命:清华微软携手,用物理智慧重塑Transformer“慧眼”
YINWA AI
人工智能科技AI人工智能科技ai
当物理学遇上AI,一场精准捕捉的变革悄然上演想象一下,在信息的汪洋大海中,寻找一根至关重要的“针”,难度无异于“大海捞针”。然而,随着诺贝尔物理学奖的光芒照耀到“机器学习之父”GeoffreyHinton的肩头,另一场跨界融合也在悄然进行——微软与清华大学的科研团队携手,将物理学的智慧融入AI,推出DifferentialTransformer(DIFFTransformer),让Transfor
- C++程序设计语言笔记——引言:第三章 C++概览之抽象机制1
钺不言
C++笔记c++笔记经验分享
C++概览:抽象机制0类C++最核心的语言特性就是类。类是一种用户自定义的数据类型,用于在程序代码中表示某种概念。无论何时,只要我们想为程序设计一个有用的概念、想法或实体,都应该设法把它表示为程序中的一个类,这样我们的想法就能表达成代码,而不是仅存在于我们的头脑中、设计文档里或者注释里。对于一个程序来说,不论是用易读性还是正确性来衡量,使用一组精挑细选的类都要比直接用内置类型完成所有任务更好,尤其
- Webpack Loader 与 Plugin 实现原理深度解析
斯~内克
Webpackwebpack前端node.js
一、Webpack扩展机制的核心设计1.1模块化构建流程概览Webpack的构建流程本质上是模块转换流水线,其核心处理流程如下:入口文件解析模块应用Loader生成AST收集依赖封装Chunk应用Plugin生成产物根据统计,一个中型项目构建过程中会触发5000+次模块转换操作,其中Loader处理占60%的构建时间,Plugin的优化阶段占30%的关键性能优化点。二、Loader实现原理深度剖析
- Sglang部署大模型常用参数详解
小树苗m
sglangvllmdeepseek
Sglang部署大模型常用参数详解常用启动命令HTTP服务器配置API配置并行处理张量并行数据并行专家并行内存和调度其他运行时选项日志记录多节点分布式服务LoRA内核后端约束解码推测解码双稀疏性调试选项优化选项参数概览常用启动命令要启用多GPU张量并行性,请添加--tp2。如果报告错误“这些设备之间不支持对等访问”,请在服务器启动命令中添加--enable-p2p-check。python-msg
- T8333FI凯钰车规级LED驱动芯片升降压升压降压AEC-Q100
Mo1estly
TMtech单片机汽车stm32嵌入式硬件硬件工程
T8333FI:LED驱动芯片深度剖析在当今照明与显示技术快速发展的时代,LED以其高效节能、长寿命等优势成为主流光源,而性能卓越的驱动芯片是充分发挥LED效能的关键。T8333FI作为一款功能强大的LED驱动控制芯片,在众多领域有着广泛应用,下面将从多个关键方面对其进行详细解读。一、关键特性概览T8333FI具有极为出色的电气参数与功能特性。在输入电压方面,其5-60V的宽泛范围,使其能适配多种
- 数学建模与图形建模资源全解析
点我头像干啥
Ai数学建模人工智能python深度学习数据挖掘分类
引言在当今的数据驱动时代,数学建模与图形建模已成为解决复杂问题、揭示数据内在规律的重要工具。无论是科学研究、工程设计,还是商业分析、决策支持,建模技术都发挥着举足轻重的作用。本文旨在为数学建模与图形建模的初学者及进阶者提供一份详尽的资源指南,涵盖软件工具、学习资料、在线课程、社区论坛等多个方面,帮助大家更好地掌握这些技能。一、数学建模资源概览1.数学建模软件工具数学建模离不开强大的软件支持。以下是
- 使用Yarn创建Grafana模板的完整指南
云服务器linux运维yarn
在本篇文章中,我将带你逐步完成如何使用Yarn生成Grafana模板的过程。Grafana是一款开源的数据可视化工具,我们可以使用它来创建各种仪表板,以便更好地监控和展示数据。请跟随我一起来完成这一过程。整体流程概览在开始之前,我们先来看看整个操作的流程。以下是步骤的概述,以表格形式展示:步骤描述1安装Node.js和Yarn2创建新的Yarn项目3安装Grafana的API客户端库4编写Graf
- 【大模型开发】大模型背后的基础组件与生态概览
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习大模型技术开发与实践大模型开发HuggingFaceDeepSpeed大模型生态机器学习深度学习大模型技术栈
支撑大模型开发与部署的关键组件与生态系统当今大模型(LLM,LargeLanguageModel)在工业与学术界的应用日益广泛,从ChatGPT、BERT到DeepSeek等新兴模型,背后离不开一整套成熟的技术生态和工具链支持。本文将介绍其中几大核心组件和框架,包括HuggingFaceTransformers、DeepSpeed、Megatron-LM,以及其他相关工具和方法,展示它们在训练效率
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文