- Megatron-LM训练框架和Deepspeed训练框架最主要的异同和优劣是什么
强化学习曾小健
人工智能
核心异同点并行策略Megatron-LM核心:以张量并行(TensorParallelism)和流水线并行(PipelineParallelism)为主,结合数据并行。张量并行通过切分模型层(如注意力头、MLP块)到不同设备,利用NVLink高速通信提升效率。流水线并行将不同层分配到不同设备,通过P2P通信协调。DeepSpeed核心:ZeRO优化技术(ZeroRedundancyOptimize
- java redis pipeline,redis pipeline简介
神奇激光世界
javaredispipeline
java中redis的pipelinepipeline方式执行redis操作:Listresults=this.getRedisTemplate().executePipelined(newRedisCallback(){@OverridepublicObjectdoInRedis(RedisConnectionconnection)throwsDataAccessException{RedisS
- java+redis+pipleline_详解Java使用Pipeline对Redis批量读写(hmset&hgetall)
666齐乐家园
一般情况下,RedisClient端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client。感觉这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端。在Redis中,有没有类似HBaseScannerCaching的东西呢,一次请求,返回多条记录呢?有,这就是Pipline。官方介绍ht
- spring data redis使用pipline
南熏门前一只喵
redisspring-bootspringdataredisspring
使用stringRedisTemplate.executePipelined可以向redis批量提交一批命令,进行命令批处理。效率比遍历的方式执行单条语句要高。‘springdataredis使用pipline的两种方式。redisTemplate.executePipelined(newRedisCallback(){@OverridepublicLongdoInRedis(RedisConne
- Biobank genetic data探析(三)
想摸鱼的生信小白
GWAS自学历程大数据
Biobankgeneticdata探析(三)——GenotypingprocessandsampleQC一.总览Category100313这类数据包含了Affymetrix做Genotypecalling的pipeline的流程信息(后续分析中可能用不到),以及样本质量控制的信息(下游分析中估计是必用了)。二.数据集描述2.1Genotypingprocess查看之后发现这部分不是很重要,毕竟
- [小白学大模型]dify-终于用mac intel跑起了大模型
码农丁丁
人工智能#pythondify
Dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。GitHub-langgenius/dify:Difyisanopen-sourceLLMappdevelopmentplatform.Dify'sintuitiveinterfacecombinesAIworkflow,RAGpipeline,agen
- 【Devops】DevOps and CI/CD Pipelines
一袋米扛几楼98
Devopsdevopsci/cd运维
1.什么是DevOps?DevOps是开发(Development)和运维(Operations)的结合,旨在缩短软件开发生命周期,同时交付高质量的软件。翻译:DevOps是一种结合开发和运维实践的方法,目标是缩短软件开发生命周期,同时确保软件的高质量交付。2.DevOps的关键原则协作:开发和运维团队之间的紧密合作。持续集成与持续交付(CI/CD):自动化代码集成和交付流程。自动化:自动化构建、
- 深入解析模拟/数字转换(ADC):从原理到应用实践
Electron-er
单片机stm32嵌入式硬件
目录引言一、ADC的核心概念与技术指标1.ADC的定义与基本原理2.关键性能指标二、主流ADC架构及适用场景1.逐次逼近型(SARADC)2.积分型(双斜ADC)3.流水线型(PipelineADC)4.Σ-Δ型ADC三、ADC在嵌入式开发中的实践1.STM32的ADC配置实例2.抗干扰设计技巧四、ADC的行业应用与前沿趋势1.核心应用领域2.技术发展趋势五、开发避坑指南结语标签:模数转换、嵌入式
- 基于线性回归和多项式回归的完整代码
yzx991013
回归线性回归算法
1.导入必要库importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLinearRegressionfromsklearn.preprocessingimportPolynomialFeaturesfromsklearn.pipelineimportPipelinefromsklearn.metricsi
- ThinkPHP6中间件深度解析:原理、流程与实战指南
一、中间件的核心价值在Web开发中,中间件是处理HTTP请求/响应的重要机制。ThinkPHP6通过中间件实现了:解耦处理逻辑:将非业务代码(如鉴权、日志)从控制器中剥离灵活组合:按需为不同路由配置不同处理流程双向处理:支持请求到达前和响应返回前的双向处理统一管理:集中处理通用逻辑,提升代码复用性二、核心原理剖析1.管道模式(Pipeline)ThinkPHP6中间件基于经典管道模式实现,请求像水
- 【ISP】ISP的pipeline的几种关键算法
白码思
算法
ISP的pipeline中涉及各种图像处理中的关键算法,比如涉及降噪、HDR合成、色调映射、去马赛克、锐化、去雾等任务。下面会出几期文章会逐个详细解释它们的原理、用途及其在图像处理流程中的作用。1.RawNR(RawNoiseReduction,RAW降噪)用途:对RAW图像进行噪声抑制,减少感光元件(CMOS/CCD)带来的噪声,提高信噪比(SNR)。原理:RAW图像是图像传感器采集的未处理数据
- 【ISP】对于ISP的关键算法补充
白码思
算法计算机视觉
本篇是对于ISP的关键算法进行补充说明,后面我们将开始逐渐深入讨论ISP的pipeline1.非局部均值(NLM,Non-LocalMeans)原理非局部均值(NLM)是一种基于块匹配(PatchMatching)的去噪算法,它利用了图像的自相似性(Self-Similarity)来进行降噪。核心思想是:一幅图像中的某个像素,其最佳去噪值可能不是简单地来自邻域均值,而是来自整幅图像中与它相似的区域
- Dify系列---【离线安装Dify】
少年攻城狮
人工智能
1.环境要求这里以centos7,4c8g为例,先安装好docker和docker-compose。2.下载安装包GitHub地址:GitHub-langgenius/dify:Difyisanopen-sourceLLMappdevelopmentplatform.Dify'sintuitiveinterfacecombinesAIworkflow,RAGpipeline,agentcapabi
- 第八课:Scrapy框架入门:工业级爬虫开发
deming_su
Pythonscrapy爬虫python
在当今大数据时代,数据抓取已成为信息获取的重要手段。Scrapy作为一个基于Python的开源网络爬虫框架,凭借其高效、灵活的特性,在工业级爬虫开发中占据重要地位。本文将详细介绍Scrapy框架的基本架构、工作流程、关键组件(如Spider类与ItemPipeline)以及中间件机制,并通过一个电商产品爬虫案例,展示如何使用Scrapy框架进行数据抓取。1.Scrapy架构与工作流程Scrapy架
- BERT(Bidirectional Encoder Representations from Transformers)的序列分类模型,简单学习记录
努力努力再努力呐
BERTbert分类学习
一、代码#本地离线模型使用fromtransformersimportAutoModelForCausalLM,AutoTokenizer,pipeline,BertForSequenceClassification,BertTokenizer#设置具体包含config.json的目录,只支持绝对路径model_dir=r"models\bert-base-chinese"#model_dir=r
- Ansible集成Git的CI/CD流水线详解
wespten
Linux自动化运维智能运维性能监控系统调优TSansibleci/cd
Ansible是一款强大且易用的自动化工具,从简单的任务到复杂的多环境部署,Ansible提供了丰富的功能和灵活性。通过编写结构良好、易于维护的剧本,可以显著提高IT任务的效率和可靠性。将Ansible集成到CI/CD流程中,可以实现自动化的应用部署和测试。常见的集成方式包括:Jenkins:通过Jenkins插件或Pipeline,执行Ansible剧本进行部署。GitLabCI/CD:在Git
- Java项目中ES作为时序库
大丈夫在世当日食一鲲
javaelasticsearch开发语言
一、ES作为时序库的核心优势高写入性能通过BulkAPI支持批量插入/更新,优化吞吐量,适合流式数据(如监控指标、IoT设备数据)的高频写入。使用Logstash作为数据管道时,可通过调整pipeline.workers和batch.size进一步提升并发处理能力。高效的查询与分析倒排索引:对文本字段(如标签)的分词处理,支持快速多条件匹配(如tagslike‘%tag1%’ANDtagslike
- Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习算法链管道网格搜索
Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明目录Python机器学习基础之算法链与管道【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明一、简单介绍二、算法链与管道1、算法链与管道的概念2、使用Pipeline的示例3、关键点说明三、用预处理进行参数选择四、构建管道五、在网格搜索中使用管道1、举例说
- Python爬虫利器Scrapy:小白也能轻松入门的保姆级教程
Serendipity_Carl
爬虫进阶python爬虫pycharmscrapy
Scrapy是纯Python开发的一个高效,结构化的抓取框架异步协程cpu为什么选择Scrapy?框架优势:高性能、模块化设计、内置数据管道(Pipeline)、自动重试机制等。适用场景:大规模数据抓取、结构化数据提取、自动化测试等。对比其他工具:相比Requests+BeautifulSoup,Scrapy更适合工程化项目Scrapy的工作原理图:引擎驱动调度器管理请求队列,下载器获取页面后由S
- CI/CD工具链实战:如何让研发效能飙升300%?
开车不喝九
devopsci/cd容器docker运维ezone
在DevOps成熟度调研中,82%的高效能团队已将CI/CD工具链升级为智能编排平台(数据来源:2023DevOps年度报告)。本文深度解析ezPipeline如何通过六大创新设计,帮助研发团队突破传统工具的效能瓶颈。本文将介绍CI/CD工具链的核心理念、如何助力研发效能提升,并推荐两三款优秀的工具供大家参考。什么是CI/CD?CI/CD是指持续集成(ContinuousIntegration)、
- Python操作redis 哈希(Hash)
Shinobi_Jack
pythonredis哈希算法
#!/usr/bin/envpython3##python-mpipinstallredisimportsysimportcsvimportredispool=redis.ConnectionPool(host='172.16.9.66',port=6379)r=redis.Redis(connection_pool=pool)pipe=r.pipeline(transaction=True)in
- 【Jenkins】个人向-Jenkinsfile如何写
luojiaao
汽车软件开发-工具链jenkins运维
官方参考:https://www.jenkins.io/doc/book/pipeline/syntax/PipelineUtilitySteps插件:https://birdbook.com.cn/ops/ci/jenkins/plugins/pipeline%20utility%20steps.html常用环境变量含义表达式备注params,传入参数传入参数params.都可以用env.来访问
- 【CI/CD】Jenkinsfile管理+参数化构建+邮件通知以及Jenkins + SonarQube 代码审查
Karoku066
ci/cdjenkins容器docker云原生运维
文章目录一、管理Jenkinsfile脚本文件将Pipeline脚本放入项目示例:提交代码:Jenkins引用Jenkinsfile二、Jenkins参数化构建配置参数化构建示例:提交代码:2.测试参数化构建三、配置邮箱服务器发送构建结果安装插件配置邮箱服务器添加邮件模板修改Jenkinsfile提交代码:测试邮件通知四、Jenkins+SonarQube代码审查安装SonarQubeJenkin
- 驱动开发系列39 - Linux Graphics 3D 绘制流程(二)- 设置渲染管线
黑不溜秋的
GPU驱动专栏驱动开发
一:概述Intel的Iris驱动是Mesa中的Gallium驱动,主要用于IntelGen8+GPU(Broadwell及更新架构)。它负责与i915内核DRM驱动交互,并通过Vulkan(ANV)、OpenGL(IrisGallium)、或OpenCL(Clover)来提供3D加速。在Iris驱动中,GPUPipeline设置涉及多个部分,包括编译和上传着色器、设置渲染目标、绑定缓冲区、配置固定
- 【Jenkins】一种灵活定义多个执行label节点的jenkinsfile写法
luojiaao
汽车软件开发-工具链jenkins运维
确定执行机器和自定义工作目录(忽略节点的workspace)pipeline{agent{node{label"XXXXX"customWorkspace"E:/workspace/"}}parameters{}options{}stages{}post{}}仅确定执行机器pipeline{agent{label"XXXXX"}parameters{}options{}stages{}post{}
- 书籍-《在AWS上构建可扩展的深度学习Pipeline》
深度学习机器学习人工智能
书籍:BuildingScalableDeepLearningPipelinesonAWS:Develop,Train,andDeployDeepLearningModels作者:AbdelazizTestas出版:Apress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《在AWS上构建可扩展的深度学习Pipeline》01书籍介绍本书是您在亚马逊网络服务(AWS)上创建强大且端到端深度学
- 最全redis缓存核心知点(原理+图解)
敲代码的胖虎
数据库redis队列数据库分布式
redis缓存核心知点一、主流应用架构二、缓存知识考点三、多路I/O复用模型四、常用的数据类型五、消息队列六、Redis的持久化6.1BGSAVE原理6.2RBD持久化的缺点6.3持久化方式之AOF6.4AOF文件重写6.5Redis数据的恢复6.7RDB和AOF的优缺点6.8RDB-AOF混合持久化方式(新版本的默认备份方式)七、Pipeline及主从同步7.1Pipeline的简介7.2red
- 实时性保障方案
m0_55576290
工作一二三balance
1.实时性保障方案双缓冲数据管道设计:classDataPipeline{QVectorbufferA,bufferB;QMutexmutex;public:voidwriteData(constQVector&data){QMutexLockerlocker(&mutex);bufferA.append(data);}QVectorreadData(){QMutexLockerlocker(&m
- Jenkins 构建 Unity打包APK
[奋斗不止]
jenkinsUnityjenkinsunity批处理编辑器
Jenkins构建Unity打包APK一、创建一个Pipeline任务在项目跟目录创建Pipeline脚本jenkins_scripts\Pipeline\android_master_pipeline脚本如下//AndroidMaster打包apkpipeline{agentanystages{stage('TestParameter'){steps{script{//shell脚本目录ANDR
- 数据管道设计与实现:从源到目标的全流程解析
Echo_Wish
实战高阶大数据数据库服务器linux
数据管道设计与实现:从源到目标的全流程解析大家好,我是Echo_Wish,今天我们来探讨一下数据管道的设计与实现。从数据源到目标数据存储的整个过程是数据分析和大数据处理中的关键环节。数据管道的设计不仅影响数据处理的效率,还决定了数据的质量和可用性。本文将详细介绍如何设计和实现高效的数据管道,并通过代码示例说明具体实现。1.数据管道的概念数据管道(DataPipeline)是指数据从源头(数据源)到
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号