方法参见:http://blog.acmol.com/?p=751
从最后一个线段开始倒着处理(因为之后的线段不会被它之前的线段覆盖),把这条线段所覆盖的所有线段编号合并到一个集合里,并以最左边线段编号为父结点。然后,以后的线段每次都是从右端向左端进行以下处理:
1、判断该线段在并查集中的根结点是否被覆盖过(用一个数组标记),如果没有被覆盖,则将该线段所在集合与海报左端点所在集合进行合并(以左端点所在集合为根)。
2、然后开始处理刚处理过的线段父结点左边的那一个线段,处理方法与第1步时一样。
3、直到要处理的线段在左端点的左边时停止循环。
处理时,如果有一个线段未被覆盖,就证明该点的染色没有被之后的染色覆盖掉。
我头一次知道还有这种搞法,涨姿势了。
PS.之前我觉得Diamond和Circle是弄出来应该是一样的形状,就把它俩当一样处理了,事实证明这是不对的……
#include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> using namespace std; const int MAXN = 52222; struct node { char op[20]; int xc, yc; int l, w, c; }; int N, M, Q; node D[MAXN]; int p[MAXN]; bool vis[MAXN]; int find( int x ) { return p[x] == x ? x : p[x] = find(p[x]); } int main() { while ( scanf( "%d%d%d", &N, &M, &Q ) == 3 ) { for ( int i = 0; i < Q; ++i ) { scanf( "%s%d%d", D[i].op, &D[i].xc, &D[i].yc ); if ( D[i].op[0] == 'R' ) scanf("%d%d%d", &D[i].l, &D[i].w, &D[i].c ); else scanf( "%d%d", &D[i].w, &D[i].c ); } int ans[10] = { 0 }; for ( int i = 0; i < N; ++i ) { for ( int j = 0; j < M; ++j ) { vis[j] = false; p[j] = j; } for ( int j = Q - 1; j >= 0; --j ) { int l, r; int color = D[j].c; if ( D[j].op[0] == 'R' ) { if ( i < D[j].xc || i >= D[j].xc + D[j].l ) continue; l = D[j].yc; r = D[j].yc + D[j].w - 1; } else if ( D[j].op[0] == 'D' ) { if ( i < D[j].xc - D[j].w || i > D[j].xc + D[j].w ) continue; l = D[j].yc - ( D[j].w - abs( i - D[j].xc ) ); r = D[j].yc + ( D[j].w - abs( i - D[j].xc ) ); } else if ( D[j].op[0] == 'C' ) { if ( ( i - D[j].xc )*( i - D[j].xc ) > D[j].w*D[j].w ) continue; int ww = (int)( sqrt( ( double)(D[j].w*D[j].w - ( i - D[j].xc )*( i - D[j].xc ) ) ) + 1e-8 ); l = D[j].yc - ww; r = D[j].yc + ww; } else { if ( i < D[j].xc || i > D[j].xc + (D[j].w+1)/2 - 1 ) continue; int ww = D[j].w - 2*( i - D[j].xc ); l = D[j].yc - ww / 2; r = D[j].yc + ww / 2; } l = max( 0, l ); r = min( M - 1, r ); int xx = find(l); int yy; for ( int k = r; k >= l; k = yy - 1 ) { yy = find(k); if ( !vis[yy] ) ++ans[color]; vis[yy] = true; if ( xx != yy ) p[yy] = xx; } } } for ( int i = 1; i <= 9; ++i ) { if ( i != 1 ) putchar(' '); printf( "%d", ans[i] ); } puts(""); } return 0; }
之前线段树也能做,只不过效率和代码长度都比较惊悚。
ZOJ上因为内存给的比较宽松,以前线段树可以AC,但是现在好像把数据加强了,线段树一定TLE……
HDU一定MLE……
附:线段树代码,TLE
#include <cstdio> #include <cstdlib> #include <cstring> #define lson l, m, rt << 1 #define rson m + 1, r, rt << 1 | 1 #define lc rt << 1 #define rc rt << 1 | 1 const int MAXN = 52222; int N, M, Q; short tree[201][ MAXN << 2 ]; char op[20]; int ans[10]; inline int max( int a, int b ) { return a > b ? a : b; } inline int min( int a, int b ) { return a < b ? a : b; } inline int abs( int a ) { return a >= 0 ? a : -a; } inline void update( short *color, int L, int R, short val, int l, int r, int rt ) { if ( L <= l && r <= R ) { color[rt] = val; return; } //if ( l >= r ) return; if ( color[rt] ) { color[lc] = color[rc] = color[rt]; color[rt] = 0; } int m = ( l + r ) >> 1; if ( L <= m ) update( color, L, R, val, lson ); if ( R > m ) update( color, L, R, val, rson ); //if ( color[lc] == color[rc] ) color[rt] = color[lc]; return; } inline void query( short *color, int l, int r, int rt ) { if ( color[rt] != 0 ) { //printf("[%d %d]: %d\n", l, r, color[rt] ); ans[ color[rt] ] += r - l + 1; return; } if ( l >= r ) return; int m = ( l + r ) >> 1; query( color, lson ); query( color, rson ); return; } int main() { while ( scanf( "%d%d%d", &N, &M, &Q ) == 3 ) { for ( int i = 0; i < N; ++i ) memset( tree[i], 0, sizeof(short)*(( N << 2 ) + 4) ); while ( Q-- ) { scanf( "%s", op ); if ( op[0] == 'D' || op[0] == 'C' ) { int xc, yc, r, c; scanf("%d%d%d%d", &xc, &yc, &r, &c); int stX = max( 0, xc - r ); int edX = min( N - 1, xc + r ); //printf( "stX=%d edX=%d\n", stX, edX ); if ( r == 0 ) { update( tree[xc], yc, yc, c, 0, M - 1, 1 ); continue; } for ( int i = stX; i <= edX; ++i ) { int stY = max( 0, yc - ( r - abs( i - xc ) ) ); int edY = min( M - 1, yc + ( r - abs(i - xc) ) ); //printf("**%d %d\n", stY, edY ); update( tree[i], stY, edY, c, 0, M - 1, 1 ); } } else if ( op[0] == 'T' ) { int xc, yc, w, c; scanf( "%d%d%d%d", &xc, &yc, &w, &c ); int stx = xc, sty = yc; int limitX = min( N - 1, xc + (w+1)/2 - 1 ); //printf( "T: %d %d\n", xc, limitX ); for ( int i = stx; i <= limitX && w >= 0; ++i ) { update( tree[i], max( sty - w/2, 0 ), min( sty + w/2, M - 1 ), c, 0, M - 1, 1 ); w -= 2; if ( w < 0 ) break; } } else if ( op[0] == 'R' ) { int xc, yc, l, w, c; scanf( "%d%d%d%d%d", &xc, &yc, &l, &w, &c ); if ( l == 0 || w == 0 ) continue; int limitX = min( xc + l - 1, N - 1 ); int limitY = min( yc + w - 1, M - 1 ); //printf("R: %d %d %d %d\n", xc, limitX, yc, limitY ); for ( int i = xc; i <= limitX; ++i ) update( tree[i], yc, limitY, c, 0, M - 1, 1 ); } } memset( ans, 0, sizeof(ans) ); for ( int j = 0; j < N; ++j ) query( tree[j], 0, M - 1, 1 ); bool first = false; for ( int i = 1; i <= 9; ++i ) { if ( first ) putchar(' '); printf( "%d", ans[i] ); first = true; } puts(""); } return 0; }