转载请注明出处:http://blog.csdn.net/ruoyunliufeng/article/details/24540403
一.驱动代码
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <asm/irq.h> #include <asm/io.h> #include <asm/arch/regs-gpio.h> #include <asm/hardware.h> #include <linux/poll.h> static struct class *sixthdrv_class; static struct class_device *sixthdrv_class_dev; //volatile unsigned long *gpfcon; //volatile unsigned long *gpfdat; static struct timer_list buttons_timer; //定义一个结构体(定时器) static DECLARE_WAIT_QUEUE_HEAD(button_waitq); /* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */ static volatile int ev_press = 0; static struct fasync_struct *button_async; //定义发送结构 struct pin_desc{ //定义结构体 unsigned int pin; unsigned int key_val; }; /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */ /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */ static unsigned char key_val; /* * K1,K2,K3,K4相应GPG0,GPG3,GPG5,GPG6 */ struct pin_desc pins_desc[4] = { //定义一个结构体数组 {S3C2410_GPG0, 0x01}, {S3C2410_GPG3, 0x02}, {S3C2410_GPG5, 0x03}, {S3C2410_GPG6, 0x04}, }; static struct pin_desc *irq_pd; //发生中断时的引脚描写叙述 //static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1 static DECLARE_MUTEX(button_lock); //定义相互排斥锁 /* * 确定按键值 */ static irqreturn_t buttons_irq(int irq, void *dev_id) //參数中断号,和ID { /* 10ms后启动定时器 */ irq_pd = (struct pin_desc *)dev_id; mod_timer(&buttons_timer, jiffies+HZ/100); //改动定时器的超时时间 return IRQ_RETVAL(IRQ_HANDLED); } static int sixth_drv_open(struct inode *inode, struct file *file) { #if 0 if (!atomic_dec_and_test(&canopen)) { atomic_inc(&canopen); return -EBUSY; } #endif if (file->f_flags & O_NONBLOCK) //推断是否是堵塞操作。 { if (down_trylock(&button_lock)) //非堵塞,假设无法获取信号量立马返回错误 return -EBUSY; } else //堵塞 { /* 获取信号量 */ down(&button_lock); } /* GPG0,GPG3,GPG5,GPG6为中断引脚: EINT8,EINT11,EINT13,EINT14 */ request_irq(IRQ_EINT8, buttons_irq, IRQT_BOTHEDGE, "K1", &pins_desc[0]); //设置引脚,使能中断 request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "K2", &pins_desc[1]); request_irq(IRQ_EINT13, buttons_irq, IRQT_BOTHEDGE, "K3", &pins_desc[2]); request_irq(IRQ_EINT14, buttons_irq, IRQT_BOTHEDGE, "K4", &pins_desc[3]); return 0; } ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { if (size != 1) return -EINVAL; if (file->f_flags & O_NONBLOCK) { if (!ev_press) //非堵塞推断有没有按键发生,假设没有返回错误 return -EAGAIN; } else { /* 假设没有按键动作, 休眠 */ wait_event_interruptible(button_waitq, ev_press); } /* 假设有按键动作, 返回键值 */ copy_to_user(buf, &key_val, 1); ev_press = 0; return 1; } int sixth_drv_close(struct inode *inode, struct file *file) { //atomic_inc(&canopen); free_irq(IRQ_EINT8, &pins_desc[0]); //出链,禁止中断 free_irq(IRQ_EINT11, &pins_desc[1]); free_irq(IRQ_EINT13, &pins_desc[2]); free_irq(IRQ_EINT14, &pins_desc[3]); up(&button_lock); //释放信号量 return 0; } static unsigned sixth_drv_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; poll_wait(file, &button_waitq, wait); // 不会马上休眠,仅仅是把进程挂到队列里面去 if (ev_press) //推断是否有数据返回。有的话进行赋值,没有的话休眠 mask |= POLLIN | POLLRDNORM; return mask; } static int sixth_drv_fasync (int fd, struct file *filp, int on) //应用程序调用接口,fasync_helper即调用 { printk("driver: sixth_drv_fasync\n"); return fasync_helper (fd, filp, on, &button_async); //初始化结构体,使中断中能够使用 } static struct file_operations sencod_drv_fops = { .owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自己主动创建的__this_module变量 */ .open = sixth_drv_open, .read = sixth_drv_read, .release = sixth_drv_close, .poll = sixth_drv_poll, .fasync = sixth_drv_fasync, }; int major; static void buttons_timer_function(unsigned long data) { struct pin_desc * pindesc = irq_pd; //?定义一个结构体指针使他的初值为ID unsigned int pinval; if (!pindesc) return; pinval = s3c2410_gpio_getpin(pindesc->pin); //系统函数独处引脚值(GPF0) if (pinval) { /* 松开 */ key_val = 0x80 | pindesc->key_val; } else { /* 按下 */ key_val = pindesc->key_val; } ev_press = 1; /* 表示中断发生了 */ wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */ kill_fasync (&button_async, SIGIO, POLL_IN); //有中断发送告诉应用程序 } static int sixth_drv_init(void) { init_timer(&buttons_timer); //初始化定时器 buttons_timer.function = buttons_timer_function;//设置处理函数 //buttons_timer.expires = 0; add_timer(&buttons_timer); //定时器告诉内核 major = register_chrdev(0, "sixth_drv", &sencod_drv_fops); //注冊 sixthdrv_class = class_create(THIS_MODULE, "sixth_drv"); //自己主动创建设备 sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */ // gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16); // gpfdat = gpfcon + 1; return 0; } static void sixth_drv_exit(void) { unregister_chrdev(major, "sixth_drv"); class_device_unregister(sixthdrv_class_dev); class_destroy(sixthdrv_class); // iounmap(gpfcon); return 0; } module_init(sixth_drv_init); module_exit(sixth_drv_exit); MODULE_LICENSE("GPL");
二.应用程序代码
#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <poll.h> #include <signal.h> #include <sys/types.h> #include <unistd.h> #include <fcntl.h> /* sixthdrvtest */ int fd; void my_signal_fun(int signum) //读取按键值,打印 { unsigned char key_val; read(fd, &key_val, 1); printf("key_val: 0x%x\n", key_val); } int main(int argc, char **argv) { unsigned char key_val; int ret; int Oflags; //signal(SIGIO, my_signal_fun); fd = open("/dev/buttons", O_RDWR); if (fd < 0) { printf("can't open!\n"); return -1; } //fcntl(fd, F_SETOWN, getpid()); //Oflags = fcntl(fd, F_GETFL); //fcntl(fd, F_SETFL, Oflags | FASYNC); while (1) { ret = read(fd, &key_val, 1); printf("key_val: 0x%x, ret = %d\n", key_val, ret); //sleep(5); } return 0; }
三.分析
小伙伴们还记得我上两节按键的时候有时候会出现两下的情况吗?归根结底就是没消抖动,按键是要消抖动的,玩过单片机的同学都知道,延时就好了。如今我们玩ARM了事实上道理也一样。详细怎么做?
1.定义结构体
static struct timer_list buttons_timer; //定义一个结构体(定时器)
static struct pin_desc *irq_pd; //发生中断时的引脚描写叙述
2.初始化(在入口函数中)
init_timer(&buttons_timer); //初始化定时器 buttons_timer.function = buttons_timer_function;//设置处理函数 add_timer(&buttons_timer); //定时器告诉内核3.处理函数
将原来中断中的处理函数放到定时器处理函数中(void buttons_timer_function(unsigned long data))然后在中断处理函数中
static irqreturn_t buttons_irq(int irq, void *dev_id) //參数中断号,和ID { /* 10ms后启动定时器 */ irq_pd = (struct pin_desc *)dev_id; mod_timer(&buttons_timer, jiffies+HZ/100); //改动定时器的超时时间 return IRQ_RETVAL(IRQ_HANDLED); }这段代码就是实现消抖的核心所在:
a.抖动的产生:
通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,因为机械触点的弹性作用,一个按键开关在闭合时不会立即稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这样的现象而作的措施就是按键消抖。抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。
b.我们怎样实现消抖:
由上图我们能够看出就是这些锯齿是我们识别了以为是按下了(事实上是抖动)所以我们用定时器延时10MS等按键状态稳定了再进行处理。
c.代码实现:
mod_timer(&buttons_timer, jiffies+HZ/100); //改动定时器的超时时间这里的100就决定了延迟时间用HZ代表1S的意思,1/100就是10MS了。
4.工作截图