leetcode[50] N-Queens

题目:给定一个n,那么在n*n的棋盘里面放国际象棋的皇后,皇后之间互不在攻击范围。(皇后的攻击范围是她所在位置的哪一行,那一列,和她的正负1的对角线)

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[

 [".Q..",  // Solution 1

  "...Q",

  "Q...",

  "..Q."],



 ["..Q.",  // Solution 2

  "Q...",

  "...Q",

  ".Q.."]

]
思路,利用递归,一行一行地处理,因为每一行只能有一个皇后。并且,每次处理当前行row时,只需要和之前的每一个皇后所在的位置进行是否冲突的判断。如果不冲突,就记录该位置后,继续往下一行递归。
需要注意的问题有:
1.用一个数组记录每一行的皇后的列,因为我们是每一行一行处理,所以一位数组记录皇后的列就行。 perm[i]表示该皇后的坐标为(i,perm[i]);
2.因为我们的行是从0开始的,所以row如果等于n了就说明已经存了n个了,那就是记录一组满足条件的答案;
3.在判断某一行的某一个位置是否放置放皇后的时候,即判断这一行的所有列和之前所有行已经有的皇后是否冲突。
class Solution {

public:

void solve50(int perm[], int row, int n, vector<vector<string> > &ans)

{

    if (row == n) // 因为row从0开始,说明已经有0到n-1总共n个符合了

    {

        vector<string> subans;

        for (int i = 0; i < n; ++i)

        {

            string tmps(n, '.');

            tmps[perm[i]] = 'Q';

            subans.push_back(tmps);

        }

        ans.push_back(subans);

        return;

    }

    else

    {

        for (int col = 0; col < n; ++col)//对与第row行的每一个列,进行判断是否符合

        {

            bool flag = true;

            for(int i = 0; i < row; ++i)//对于第row行的每一个列要与之前的每行锁存的王后判断是否冲突

            {

                if (col == perm[i] || col - perm[i] == row - i || col - perm[i] == i - row)

                {// 当前列等于之前的列,或者当前的点和之前的点的斜率为正负1时,为false,否则true进行判断下一行

                    flag = false;

                }

            }

            if (flag)//没有冲突,记录当前列数,进入下一行的递归选择

            {

                perm[row] = col;

                solve50(perm, row + 1, n, ans);

            }

        }

    }

}

vector<vector<string> > solveNQueens(int n)

{

    vector<vector<string> > ans;

    //ans.clear();

    int perm[n];

    //memset(perm, 0, sizeof(perm));

    solve50(perm, 0, n, ans);

    return ans;

}

};

 

你可能感兴趣的:(LeetCode)