Codeforces Round #267 (Div. 2)

QAQAQAQAQ

D题sb题没写出来(大雾)

QAQAQAQ

差点掉ratingQAQ

c题我能再wa多次吗,就打错个max的转移啊!QAQ

 

A.George and Accommodation

题意:给你a和b,问你a是否小于等于b-2

这。。。

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

using namespace std;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << #x << " = " << x << endl

#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const int max(const int &a, const int &b) { return a>b?a:b; }

inline const int min(const int &a, const int &b) { return a<b?a:b; }



int main() {

	int n=getint(), ans=0;

	while(n--) {

		int a=getint(), b=getint();

		if(b-2>=a) ++ans;

	}

	print(ans);

	return 0;

}

 

B.Fedor and New Game

题意:给你m+1个数让你判断所给的数的二进制形式与第m+1个数不想同的位数是否小于等于k,累计答案

能再水点吗。。

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

using namespace std;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << #x << " = " << x << endl

#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const int max(const int &a, const int &b) { return a>b?a:b; }

inline const int min(const int &a, const int &b) { return a<b?a:b; }



const int N=1005;

int a[N], my, ans;

int main() {

	int n=getint(), m=getint(), k=getint();

	for1(i, 1, m) read(a[i]);

	read(my);

	for1(i, 1, m) {

		int tot=0;

		for3(j, n-1, 0) {

			if(((1<<j)&a[i])!=((1<<j)&my)) ++tot;

		}

		if(tot<=k) ++ans;

	}

	print(ans);

	return 0;

}

 

C.George and Job

题意:给你n个数,让你分成k块不相交的大小为m的连续的块,然后求所有可行方案的最大值

设d[i, j]表示前i个数分成j块的最大值

d[i, j]=max{d[k, j-1]}+sum[i-m, i],1<=k<=i-m

答案是max{d[i, k]}

这里是n^3的,我们考虑优化横n^2

设mx[i, j]表示max{d[k, j]} 1<=k<=j

然后转移变成

d[i, j]=mx[i-m, j-1]+sum[i-m, i]

而mx的转移是

mx[i, j]=max{mx[i-1, j], d[i, j]}

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

using namespace std;

typedef long long ll;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%I64d", a)

#define dbg(x) cout << #x << " = " << x << endl

#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }

inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const ll max(const ll &a, const ll &b) { return a>b?a:b; }

inline const ll min(const ll &a, const ll &b) { return a<b?a:b; }



const int N=5005;

int n, m, k;

ll sum[N], d[N], ans, mx[N][N], f[N], a[N];

int main() {

	read(n); read(m); read(k);

	for1(i, 1, n) read(a[i]), sum[i]=sum[i-1]+a[i];

	for1(i, m, n) d[i]=sum[i]-sum[i-m];

	for1(i, m, n) {

		for3(j, k, 1) {

			f[j]=mx[i-m][j-1]+d[i];

			mx[i][j]=max(mx[i-1][j], f[j]);

		}

		ans=max(ans, f[k]);

	}

	print(ans);

	return 0;

}

 

D.Fedor and Essay

字符串题,,,,

题意:给你一个文本串,不分大小,里边有n个单词,然后给你m个转换,求转换后的文本串的最小“r”的数量并且文本的长度最短

QAQ

有环啊啊 啊。。还要开long long

所以dfs之前我们要缩点。。。

然后缩点后我们dfs维护最小,然后输出答案。。

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

#include <map>

using namespace std;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << #x << " = " << x << endl

#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const int max(const int &a, const int &b) { return a>b?a:b; }

inline const int min(const int &a, const int &b) { return a<b?a:b; }



const int N=500005;

string tp;

map<string, int> mp;

char rdin[N];

int n, m, tot, d[N], ln[N], cnt, ihead[N], vis[N], mn[N], essay[N], FF[N], LL[N], scc, tm, top, q[N], len[N], belongs[N], U[N], V[N];

struct ED { int next, to; }e[N*4];

void add(int u, int v) {

	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;

}

int cal(char *s) {

	int len=strlen(s), ret=0;

	rep(j, len) if(s[j]=='r') ++ret;

	return ret;

}

int readin() {

	scanf("%s", rdin);

	int len=strlen(rdin);

	rep(j, len) if(rdin[j]>='A'&&rdin[j]<='Z') rdin[j]=rdin[j]-'A'+'a';

	tp=rdin;

	if(mp[tp]) return mp[tp];

	mp[tp]=++tot;

	ln[tot]=strlen(rdin);

	d[tot]=cal(rdin);

	return tot;

}

void dfs(int u) {

	vis[u]=1;

	int v;

	for(int i=ihead[u]; i; i=e[i].next) {

		if(!vis[v=e[i].to]) dfs(v);

		if(mn[v]<mn[u] || (mn[v]==mn[u] && len[v]<len[u])) {

			mn[u]=mn[v];

			len[u]=len[v];

		}

	}

}

void tarjan(int u) {

	LL[u]=FF[u]=++tm;

	vis[u]=1; q[++top]=u;

	int v;

	for(int i=ihead[u]; i; i=e[i].next) {

		v=e[i].to;

		if(!FF[v]) tarjan(v), LL[u]=min(LL[u], LL[v]);

		else if(vis[v]) LL[u]=min(LL[u], FF[v]);

	}

	if(FF[u]==LL[u]) {

		++scc;

		int x;

		do {

			x=q[top--];

			vis[x]=0;

			belongs[x]=scc;

			if(d[x]<mn[scc] || (d[x]==mn[scc]&&ln[x]<len[scc])) mn[scc]=d[x], len[scc]=ln[x];

		} while(x!=u);

	}

}

void rebuild() {

	CC(vis, 0); CC(ihead, 0);

	cnt=0;

	for1(i, 1, m)

		if(belongs[U[i]]!=belongs[V[i]]) add(belongs[U[i]], belongs[V[i]]);

}

int main() {

	read(n);

	for1(i, 1, n) essay[i]=readin();

	read(m);

	for1(i, 1, m) {

		int pos1=readin(), pos2=readin();

		add(pos1, pos2);

		U[i]=pos1, V[i]=pos2;

	}

	CC(mn, 0x3f); CC(len, 0x3f);

	for1(i, 1, tot) if(!FF[i]) tarjan(i);

	rebuild();

	for1(i, 1, scc) dfs(i);

	long long ans1=0, ans2=0;

	for1(i, 1, n) {

		int pos=belongs[essay[i]];

		ans1+=mn[pos];

		ans2+=len[pos];

	}

	printf("%I64d %I64d\n", ans1, ans2);

	return 0;

}

 

E.没看题。。

你可能感兴趣的:(codeforces)