IMA-ADPCM (ADPCM Adaptive Differential Pulse Code Modulation), 是一种针对 16bit (或者更高?) 声音波形数据的一种有损压缩算法, 它将声音流中每次采样的 16bit 数据以 4bit 存储, 所以压缩比 1:4. 而压缩/解压缩算法非常的简单, 所以是一种低空间消耗,高质量声音获得的好途径. 著名的 WestWood 在它的许多游戏里都使用了这个技术, DUNE II, C&C, RA 等等, 保存声音的数据文件后缀名为 .AUD 的大多用 IMA-ADPCM 压缩. (不过 WestWood 的游戏数据文件大多经过打包, 这些小文件统统放进了一个 .MIX 文件包中, 关于解开 .MIX 文件包, 见 http://www.geocities.com/SiliconValley/8682)
ADPCM 主要是针对连续的波形数据的, 保存的是波形的变化情况, 以达到描述整个波形的目的. 本文并不想详细介绍 ADPCM 算法原理, 那些是数学知识,有高等数学基础的朋友可以自己研究, 云风数学马马虎虎, 这里也讲不清楚, 但是它的编码和解码的过程却很简洁, 列在后面, 相信大家能够看明白.
先给不熟悉声音信号的储存的朋友补一课, 不想看就跳过吧 ^_^: 一般游戏中用到的声音有两种不同性质的, 一是波形数据, 是经过事先声音采样录制下来的, 采样时一般按每秒 8千到 4 万次的频率(8Khz ~44.4Khz)记录每次采样时的声音强度, 在播放时, 再以同一频率, 按样本声音的强弱变化触发扬声器, 声音就被重现了, 如果你将采样数据流标在坐标纸上,就会发现是一条波形曲线, 如果采样时将声音信号强弱分为 256 级, 就是我们说的 8bit 采样, 如果分为 65536 级, 就是 16bit 采样了; 另一是 MIDI 类的, 它是将各种乐器的声学性质都事先记录下来, 而数据流中仍旧是按一定频率记录, 但不是每秒数千上万次了, 大约只有几 Hz 到几十 Hz, 将几种乐器按某一音频和强度触发描述下来, 经过声卡合成为波形信号就可以播放了.
8bit 采样的声音人耳是可以接受的, 比如 Win95 启动的音乐, 而 16bit 采样的声音可以算是高音质了, 现代游戏中也多采用它. (将声音强度分的更细没有太多的意义, 通常都是提高采样频率来近一步提高音质) ADPCM 算法却可以将每次采样得到的 16bit 数据压缩到 4bit ;-) 需要注意的是, 如果要压缩/接压缩立体声信号, 请注意采样时, 声音信号是放在一起的, 需要将两个声道分别处理. OK, 下面列出了其中的奥妙, 请细细品味:
IMA-ADPCM 压缩过程
首先我们认为声音信号都是从零开始的,那么需要初始化两个变量
int index=0,prev_sample:=0;下面的循环将依次处理声音数据流, 注意其中的 getnextsample() 应该得到一个 16bit 的采样数据, 而 outputdata() 可以将计算出来的数据保存起来,程序中用到的 step_table[], index_adjust[] 附在后面:
int index=0,prev_sample:=0;while (还有数据要处理) { cur_sample=getnextsample(); // 得到当前的采样数据 delta=cur_sample-prev_sample; // 计算出和上一个的增量 if (delta<0) delta=-delta,sb=8; else sb=0; // sb 保存的是符号位 code = 4*delta / step_table[index]; // 根据 steptable[] 得到一个 0~7 的值 if (code>7) code=7; // 它描述了声音强度的变化量 index+=index_adjust[code]; // 根据声音强度调整下次取 steptable 的序号 if (index<0) index=0; // 便于下次得到更精确的变化量的描述 else if (index>88) index=88; prev_sample=cur_sample; outputode(code|sb); // 加上符号位保存起来 } |
IMA-ADPCM 解压缩过程
接压缩实际是压缩的一个逆过程, 同样其中的 getnextcode() 应该得到一个编码, 而 outputsample() 可以将解码出来的声音信号保存起来. 这段代码同样使用了同一个的 setp_table[] 和 index_adjust() 附在后面:
int index=0,cur_sample:=0;while (还有数据要处理) { code=getnextcode(); // 得到下一个数据 if ((code & 8) != 0) sb=1 else sb=0; code&=7; // 将 code 分离为数据和符号 delta=(step_table[index]*code) /4 + step_table[index] / 8; // 后面加的一项是为了减少误差 if (sb==1) delta=-delta; cur_sample+=delta; // 计算出当前的波形数据 if (cur_sample>32767) output_sample(32767); else if (cur_sample<-32768) output_sample(-32768); else output_sample(cur_sample); index+=index_adjust[code]; if (index<0) index=0; if (index>88) index=88; } |
附表
int index_adjust[8] = {-1,-1,-1,-1,2,4,6,8};
int step_table[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 };
struct { unsigned short int samplespersec; // 频率 long int size; // 除掉文件头的大小 long int outsize; // 输出数据大小 (通常是 4 倍) unsigned char flags; // 位 0 描述是否立体声, 位 1 描述是否 16 bit unsigned char type; // 1=WW 压缩, 99=IMA ADPCM }AUD 文件的声音信号是按块存放的, 每块大约 512 字节, 没一块都有一个块头结构:
struct { unsigned short int size; // 压缩过的数据大小 unsigned short int outsize; // 输出数据大小 (通常是 4 倍) long int id; // 永远是 0x0000DEAF }
Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=3222