LeetCode | Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = “great”:

great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.

 1 class Solution {

 2 public:

 3     bool anagram(string s1, string s2){

 4         if(s1.size() != s2.size()) return false;

 5         sort(s1.begin(), s1.end());

 6         sort(s2.begin(), s2.end());

 7         return s1 == s2;

 8     }

 9     bool isScramble(string s1, string s2) {

10         if (s1.empty() && s2.empty()) return true;

11         if (s1.length() != s2.length()) return false;

12         if (s1 == s2) return true;

13         if (!anagram(s1, s2)) return false;

14         bool ret = false;

15         int n = s1.length();

16         

17         for (int i = 1; i < n; i++) {

18             ret = isScramble(s1.substr(0, i), s2.substr(n - i, i)) && isScramble(s1.substr(i, n - i), s2.substr(0, n - i));

19             if (ret) return true;

20             ret = isScramble(s1.substr(0, i), s2.substr(0, i)) && isScramble(s1.substr(i, n - i), s2.substr(i, n - i));

21             if (ret) return true;

22         }

23         return ret;

24     }

25 };

递归的算法一开始TLE,知道要试着剪枝,看了discussion之后发现可以加了anagram检测之后就AC了。。。

动态规划的算法想不出来。其实关键是把重复的子问题找出来。下午真是脑子生锈了。。。google了一下发现其实也挺简单的。。。算了,下次再做。


 

Method II

 1 class Solution {

 2 public:

 3     bool isScramble(string s1, string s2) {

 4         int n1 = s1.length(), n2 = s2.length();

 5         if (n1 != n2) return false;

 6         if (n1 == 0) return true;

 7     

 8         //vector<vector<vector<bool> > > dp(n1, vector<vector<bool> >(n1, vector<bool>(n1 + 1, false)));

 9         //bool *** dp = new bool**[n1];

10         bool dp[100][100][100];

11         memset(dp, 0, 1000000*sizeof(bool));

12         for (int i = 0; i < n1; ++i) {

13             //dp[i] = new bool*[n1];

14             for (int j = 0; j < n2; ++j) {

15                 //dp[i][j] = new bool[n1 + 1];

16                 //memset(dp[i][j], 0, sizeof(bool) * (n1 + 1));

17                 if (s1[i] == s2[j]) dp[i][j][1] = true;

18             }

19         }

20         

21         

22         for (int len = 2; len <= n1; ++len) {

23             for (int i = 0; i <= n1 - len; ++i) {

24                 for (int j = 0; j <= n2 - len; ++j) {

25                     for (int l = 1; l < len; ++l) {

26                         if ((dp[i][j][l] && dp[i + l][j + l][len - l]) || (dp[i][j + len - l][l] && dp[i + l][j][len - l])) {

27                             dp[i][j][len] = true;

28                             break;

29                         }

30                     }

31                 }

32             }

33         }

34         

35         return dp[0][0][n1];

36     }

37 };

如果用vector的话,accepted需要570ms;如果用数组的话就可以60msaccepted。递归其实才28ms。。。。

动态规划的时间复杂度是O(n^4)。

第三次写。

 1 class Solution {

 2 public:

 3     bool isScramble(string s1, string s2) {

 4         if (s1.length() != s2.length()) return false;

 5         int n1 = s1.length(), n2 = s2.length();

 6         bool dp[100][100][100];

 7         

 8         for (int len = 1; len <= n2; len++) {

 9             for (int i = 0; i + len <= n1; i++) {

10                 for (int j = 0; j + len <= n2; j++) {

11                     dp[i][j][len] = (len == 1 && s1[i] == s2[j]);

12                     for (int m = 1; m < len; m++) {

13                         dp[i][j][len] = (dp[i][j][m] && dp[i + m][j + m][len - m]) || (dp[i][j + len - m][m] && dp[i + m][j][len - m]);

14                         if (dp[i][j][len]) break;

15                     }

16                 }

17             }

18         }

19         return dp[0][0][n1];

20     }

21 };

 

你可能感兴趣的:(LeetCode)