Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
For example, given
s = "leetcode",
dict = ["leet", "code"].
Return true because "leetcode" can be segmented as "leet code".
DP很容易就出来了。possible[i]保存[0,i]是否可以被分割的结果。
possible[i] = true, 当存在possible[k] = true,且[k,i]是dict里的一个word时。否则possible[i] = false。
这种是自底而下的。
1 class Solution { 2 public: 3 bool wordBreak(string s, unordered_set<string> &dict) { 4 int n = s.length(); 5 if (n == 0) return true; 6 vector<bool> possible(n, false); 7 8 for (int i = 0; i < n; ++i) { 9 for (int j = i; j >= 0; --j) { 10 if ((j == 0 || possible[j - 1]) && dict.find(s.substr(j, i - j + 1)) != dict.end()) { 11 possible[i] = true; 12 break; 13 } 14 } 15 } 16 17 return possible[n - 1]; 18 } 19 };
算法的时间复杂度最坏情况是O(n^2),空间复杂度是O(n)。
网上也有人用前缀树(Trie树、字典树)实现的。私以为用前缀树还得先将dict里的所有word插进去,时间复杂度为O(n*l+s),l为word的最大长度,s为dict的大小。如果dict的大小比n大得多,那么整个开销也是不菲的。
只要稍微将上面的代码优化一下,先求出word的最大长度,那么时间复杂度也可以优化到O(n*l+s)。
Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each word is a valid dictionary word.
Return all such possible sentences.
For example, given
s = "catsanddog",
dict = ["cat", "cats", "and", "sand", "dog"].
A solution is ["cats and dog", "cat sand dog"].
直接用回溯就可以了。自顶而下。
class Solution { public: vector<string> wordBreak(string s, unordered_set<string> &dict) { vector<string> ret; bt(s, dict, "", s.length(), ret); return ret; } void bt(string &s, unordered_set<string> &dict, string str, int index, vector<string> &ret) { if (index < 0) { ret.push_back(str.substr(0, str.length() - 1)); return; } for (int i = index; i >= 0; --i) { string tmp = s.substr(i, index - i + 1); if (dict.find(tmp) != dict.end()) { bt(s, dict, tmp + " " + str, i - 1, ret); } } } };