DES加密和解密PHP,Java,ObjectC统一的方法

原文: DES加密和解密PHP,Java,ObjectC统一的方法

PHP的加解密函数

<?php



class DesComponent {

	var $key = '12345678';



	function encrypt($string) {



		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);

		$iv=null;

		foreach ($ivArray as $element)

			$iv.=CHR($element);





 		$size = mcrypt_get_block_size ( MCRYPT_DES, MCRYPT_MODE_CBC );  

       $string = $this->pkcs5Pad ( $string, $size );  



		$data =  mcrypt_encrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);



		$data = base64_encode($data);

		return $data;

	}



	function decrypt($string) {



		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);

		$iv=null;

		foreach ($ivArray as $element)

			$iv.=CHR($element);



		$string = base64_decode($string);

		//echo("****");

		//echo($string);

		//echo("****");

		$result =  mcrypt_decrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);

   $result = $this->pkcs5Unpad( $result );  



		return $result;

	}

	

	

	 function pkcs5Pad($text, $blocksize)  

    {  

        $pad = $blocksize - (strlen ( $text ) % $blocksize);  

        return $text . str_repeat ( chr ( $pad ), $pad );  

    }  

  

    function pkcs5Unpad($text)  

    {  

        $pad = ord ( $text {strlen ( $text ) - 1} );  

        if ($pad > strlen ( $text ))  

            return false;  

        if (strspn ( $text, chr ( $pad ), strlen ( $text ) - $pad ) != $pad)  

            return false;  

        return substr ( $text, 0, - 1 * $pad );  

    }  

	

}





$des = new DesComponent();

echo ($des->encrypt("19760519"));

echo "<br />";



//die($des->decrypt("zLVdpYUM0qw="));

//die($des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="));



$t2 =$des->decrypt("zLVdpYUM0qw="); 

echo $t2;

echo "--";

echo strlen($t2);

echo is_utf8($t2);





echo "<br />";

$t3 = mb_convert_encoding($t2,"GB2312", "utf-8");

echo $t3;

echo "--";

echo strlen($t3);

echo is_utf8($t3);





echo "<br />";





$t1 =$des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="); 

echo $t1;

echo "--";

echo strlen($t1);

echo is_utf8($t1);



echo "<br />";

$t3 = mb_convert_encoding($t1, "utf-8","GB2312");

echo $t3;

echo "--";

echo strlen($t3);

echo is_utf8($t3);



function is_utf8($string) { 

return preg_match('%^(?: 

[\x09\x0A\x0D\x20-\x7E] # ASCII 

| [\xC2-\xDF][\x80-\xBF] # non-overlong 2-byte 

| \xE0[\xA0-\xBF][\x80-\xBF] # excluding overlongs 

| [\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} # straight 3-byte 

| \xED[\x80-\x9F][\x80-\xBF] # excluding surrogates 

| \xF0[\x90-\xBF][\x80-\xBF]{2} # planes 1-3 

| [\xF1-\xF3][\x80-\xBF]{3} # planes 4-15 

| \xF4[\x80-\x8F][\x80-\xBF]{2} # plane 16 

)*$%xs', $string); 

}

?>

 

Java的加解密函数

package ghj1976.Demo;





/*

 * Copyright (C) 2010 The Android Open Source Project

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 *      http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

 

import java.io.UnsupportedEncodingException;

 

/**

 * Utilities for encoding and decoding the Base64 representation of

 * binary data.  See RFCs <a

 * href="http://www.ietf.org/rfc/rfc2045.txt">2045</a> and <a

 * href="http://www.ietf.org/rfc/rfc3548.txt">3548</a>.

 */

public class Base64 {

    /**

     * Default values for encoder/decoder flags.

     */

    public static final int DEFAULT = 0;

 

    /**

     * Encoder flag bit to omit the padding '=' characters at the end

     * of the output (if any).

     */

    public static final int NO_PADDING = 1;

 

    /**

     * Encoder flag bit to omit all line terminators (i.e., the output

     * will be on one long line).

     */

    public static final int NO_WRAP = 2;

 

    /**

     * Encoder flag bit to indicate lines should be terminated with a

     * CRLF pair instead of just an LF.  Has no effect if {@code

     * NO_WRAP} is specified as well.

     */

    public static final int CRLF = 4;

 

    /**

     * Encoder/decoder flag bit to indicate using the "URL and

     * filename safe" variant of Base64 (see RFC 3548 section 4) where

     * {@code -} and {@code _} are used in place of {@code +} and

     * {@code /}.

     */

    public static final int URL_SAFE = 8;

 

    /**

     * Flag to pass to {@link Base64OutputStream} to indicate that it

     * should not close the output stream it is wrapping when it

     * itself is closed.

     */

    public static final int NO_CLOSE = 16;

 

    //  --------------------------------------------------------

    //  shared code

    //  --------------------------------------------------------

 

    /* package */ static abstract class Coder {

        public byte[] output;

        public int op;

 

        /**

         * Encode/decode another block of input data.  this.output is

         * provided by the caller, and must be big enough to hold all

         * the coded data.  On exit, this.opwill be set to the length

         * of the coded data.

         *

         * @param finish true if this is the final call to process for

         *        this object.  Will finalize the coder state and

         *        include any final bytes in the output.

         *

         * @return true if the input so far is good; false if some

         *         error has been detected in the input stream..

         */

        public abstract boolean process(byte[] input, int offset, int len, boolean finish);

 

        /**

         * @return the maximum number of bytes a call to process()

         * could produce for the given number of input bytes.  This may

         * be an overestimate.

         */

        public abstract int maxOutputSize(int len);

    }

 

    //  --------------------------------------------------------

    //  decoding

    //  --------------------------------------------------------

 

    /**

     * Decode the Base64-encoded data in input and return the data in

     * a new byte array.

     *

     * <p>The padding '=' characters at the end are considered optional, but

     * if any are present, there must be the correct number of them.

     *

     * @param str    the input String to decode, which is converted to

     *               bytes using the default charset

     * @param flags  controls certain features of the decoded output.

     *               Pass {@code DEFAULT} to decode standard Base64.

     *

     * @throws IllegalArgumentException if the input contains

     * incorrect padding

     */

    public static byte[] decode(String str, int flags) {

        return decode(str.getBytes(), flags);

    }

 

    /**

     * Decode the Base64-encoded data in input and return the data in

     * a new byte array.

     *

     * <p>The padding '=' characters at the end are considered optional, but

     * if any are present, there must be the correct number of them.

     *

     * @param input the input array to decode

     * @param flags  controls certain features of the decoded output.

     *               Pass {@code DEFAULT} to decode standard Base64.

     *

     * @throws IllegalArgumentException if the input contains

     * incorrect padding

     */

    public static byte[] decode(byte[] input, int flags) {

        return decode(input, 0, input.length, flags);

    }

 

    /**

     * Decode the Base64-encoded data in input and return the data in

     * a new byte array.

     *

     * <p>The padding '=' characters at the end are considered optional, but

     * if any are present, there must be the correct number of them.

     *

     * @param input  the data to decode

     * @param offset the position within the input array at which to start

     * @param len    the number of bytes of input to decode

     * @param flags  controls certain features of the decoded output.

     *               Pass {@code DEFAULT} to decode standard Base64.

     *

     * @throws IllegalArgumentException if the input contains

     * incorrect padding

     */

    public static byte[] decode(byte[] input, int offset, int len, int flags) {

        // Allocate space for the most data the input could represent.

        // (It could contain less if it contains whitespace, etc.)

        Decoder decoder = new Decoder(flags, new byte[len*3/4]);

 

        if (!decoder.process(input, offset, len, true)) {

            throw new IllegalArgumentException("bad base-64");

        }

 

        // Maybe we got lucky and allocated exactly enough output space.

        if (decoder.op == decoder.output.length) {

            return decoder.output;

        }

 

        // Need to shorten the array, so allocate a new one of the

        // right size and copy.

        byte[] temp = new byte[decoder.op];

        System.arraycopy(decoder.output, 0, temp, 0, decoder.op);

        return temp;

    }

 

    /* package */ static class Decoder extends Coder {

        /**

         * Lookup table for turning bytes into their position in the

         * Base64 alphabet.

         */

        private static final int DECODE[] = {

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,

            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,

            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,

            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,

            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

        };

 

        /**

         * Decode lookup table for the "web safe" variant (RFC 3548

         * sec. 4) where - and _ replace + and /.

         */

        private static final int DECODE_WEBSAFE[] = {

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,

            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,

            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,

            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,

            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

        };

 

        /** Non-data values in the DECODE arrays. */

        private static final int SKIP = -1;

        private static final int EQUALS = -2;

 

        /**

         * States 0-3 are reading through the next input tuple.

         * State 4 is having read one '=' and expecting exactly

         * one more.

         * State 5 is expecting no more data or padding characters

         * in the input.

         * State 6 is the error state; an error has been detected

         * in the input and no future input can "fix" it.

         */

        private int state;   // state number (0 to 6)

        private int value;

 

        final private int[] alphabet;

 

        public Decoder(int flags, byte[] output) {

            this.output = output;

 

            alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;

            state = 0;

            value = 0;

        }

 

        /**

         * @return an overestimate for the number of bytes {@code

         * len} bytes could decode to.

         */

        public int maxOutputSize(int len) {

            return len * 3/4 + 10;

        }

 

        /**

         * Decode another block of input data.

         *

         * @return true if the state machine is still healthy.  false if

         *         bad base-64 data has been detected in the input stream.

         */

        public boolean process(byte[] input, int offset, int len, boolean finish) {

            if (this.state == 6) return false;

 

            int p = offset;

            len += offset;

 

            // Using local variables makes the decoder about 12%

            // faster than if we manipulate the member variables in

            // the loop.  (Even alphabet makes a measurable

            // difference, which is somewhat surprising to me since

            // the member variable is final.)

            int state = this.state;

            int value = this.value;

            int op = 0;

            final byte[] output = this.output;

            final int[] alphabet = this.alphabet;

 

            while (p < len) {

                // Try the fast path:  we're starting a new tuple and the

                // next four bytes of the input stream are all data

                // bytes.  This corresponds to going through states

                // 0-1-2-3-0.  We expect to use this method for most of

                // the data.

                //

                // If any of the next four bytes of input are non-data

                // (whitespace, etc.), value will end up negative.  (All

                // the non-data values in decode are small negative

                // numbers, so shifting any of them up and or'ing them

                // together will result in a value with its top bit set.)

                //

                // You can remove this whole block and the output should

                // be the same, just slower.

                if (state == 0) {

                    while (p+4 <= len &&

                           (value = ((alphabet[input[p] & 0xff] << 18) |

                                     (alphabet[input[p+1] & 0xff] << 12) |

                                     (alphabet[input[p+2] & 0xff] << 6) |

                                     (alphabet[input[p+3] & 0xff]))) >= 0) {

                        output[op+2] = (byte) value;

                        output[op+1] = (byte) (value >> 8);

                        output[op] = (byte) (value >> 16);

                        op += 3;

                        p += 4;

                    }

                    if (p >= len) break;

                }

 

                // The fast path isn't available -- either we've read a

                // partial tuple, or the next four input bytes aren't all

                // data, or whatever.  Fall back to the slower state

                // machine implementation.

 

                int d = alphabet[input[p++] & 0xff];

 

                switch (state) {

                case 0:

                    if (d >= 0) {

                        value = d;

                        ++state;

                    } else if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

 

                case 1:

                    if (d >= 0) {

                        value = (value << 6) | d;

                        ++state;

                    } else if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

 

                case 2:

                    if (d >= 0) {

                        value = (value << 6) | d;

                        ++state;

                    } else if (d == EQUALS) {

                        // Emit the last (partial) output tuple;

                        // expect exactly one more padding character.

                        output[op++] = (byte) (value >> 4);

                        state = 4;

                    } else if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

 

                case 3:

                    if (d >= 0) {

                        // Emit the output triple and return to state 0.

                        value = (value << 6) | d;

                        output[op+2] = (byte) value;

                        output[op+1] = (byte) (value >> 8);

                        output[op] = (byte) (value >> 16);

                        op += 3;

                        state = 0;

                    } else if (d == EQUALS) {

                        // Emit the last (partial) output tuple;

                        // expect no further data or padding characters.

                        output[op+1] = (byte) (value >> 2);

                        output[op] = (byte) (value >> 10);

                        op += 2;

                        state = 5;

                    } else if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

 

                case 4:

                    if (d == EQUALS) {

                        ++state;

                    } else if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

 

                case 5:

                    if (d != SKIP) {

                        this.state = 6;

                        return false;

                    }

                    break;

                }

            }

 

            if (!finish) {

                // We're out of input, but a future call could provide

                // more.

                this.state = state;

                this.value = value;

                this.op = op;

                return true;

            }

 

            // Done reading input.  Now figure out where we are left in

            // the state machine and finish up.

 

            switch (state) {

            case 0:

                // Output length is a multiple of three.  Fine.

                break;

            case 1:

                // Read one extra input byte, which isn't enough to

                // make another output byte.  Illegal.

                this.state = 6;

                return false;

            case 2:

                // Read two extra input bytes, enough to emit 1 more

                // output byte.  Fine.

                output[op++] = (byte) (value >> 4);

                break;

            case 3:

                // Read three extra input bytes, enough to emit 2 more

                // output bytes.  Fine.

                output[op++] = (byte) (value >> 10);

                output[op++] = (byte) (value >> 2);

                break;

            case 4:

                // Read one padding '=' when we expected 2.  Illegal.

                this.state = 6;

                return false;

            case 5:

                // Read all the padding '='s we expected and no more.

                // Fine.

                break;

            }

 

            this.state = state;

            this.op = op;

            return true;

        }

    }

 

    //  --------------------------------------------------------

    //  encoding

    //  --------------------------------------------------------

 

    /**

     * Base64-encode the given data and return a newly allocated

     * String with the result.

     *

     * @param input  the data to encode

     * @param flags  controls certain features of the encoded output.

     *               Passing {@code DEFAULT} results in output that

     *               adheres to RFC 2045.

     */

    public static String encodeToString(byte[] input, int flags) {

        try {

            return new String(encode(input, flags), "US-ASCII");

        } catch (UnsupportedEncodingException e) {

            // US-ASCII is guaranteed to be available.

            throw new AssertionError(e);

        }

    }

 

    /**

     * Base64-encode the given data and return a newly allocated

     * String with the result.

     *

     * @param input  the data to encode

     * @param offset the position within the input array at which to

     *               start

     * @param len    the number of bytes of input to encode

     * @param flags  controls certain features of the encoded output.

     *               Passing {@code DEFAULT} results in output that

     *               adheres to RFC 2045.

     */

    public static String encodeToString(byte[] input, int offset, int len, int flags) {

        try {

            return new String(encode(input, offset, len, flags), "US-ASCII");

        } catch (UnsupportedEncodingException e) {

            // US-ASCII is guaranteed to be available.

            throw new AssertionError(e);

        }

    }

 

    /**

     * Base64-encode the given data and return a newly allocated

     * byte[] with the result.

     *

     * @param input  the data to encode

     * @param flags  controls certain features of the encoded output.

     *               Passing {@code DEFAULT} results in output that

     *               adheres to RFC 2045.

     */

    public static byte[] encode(byte[] input, int flags) {

        return encode(input, 0, input.length, flags);

    }

 

    /**

     * Base64-encode the given data and return a newly allocated

     * byte[] with the result.

     *

     * @param input  the data to encode

     * @param offset the position within the input array at which to

     *               start

     * @param len    the number of bytes of input to encode

     * @param flags  controls certain features of the encoded output.

     *               Passing {@code DEFAULT} results in output that

     *               adheres to RFC 2045.

     */

    public static byte[] encode(byte[] input, int offset, int len, int flags) {

        Encoder encoder = new Encoder(flags, null);

 

        // Compute the exact length of the array we will produce.

        int output_len = len / 3 * 4;

 

        // Account for the tail of the data and the padding bytes, if any.

        if (encoder.do_padding) {

            if (len % 3 > 0) {

                output_len += 4;

            }

        } else {

            switch (len % 3) {

                case 0: break;

                case 1: output_len += 2; break;

                case 2: output_len += 3; break;

            }

        }

 

        // Account for the newlines, if any.

        if (encoder.do_newline && len > 0) {

            output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *

                (encoder.do_cr ? 2 : 1);

        }

 

        encoder.output = new byte[output_len];

        encoder.process(input, offset, len, true);

 

        assert encoder.op == output_len;

 

        return encoder.output;

    }

 

    /* package */ static class Encoder extends Coder {

        /**

         * Emit a new line every this many output tuples.  Corresponds to

         * a 76-character line length (the maximum allowable according to

         * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).

         */

        public static final int LINE_GROUPS = 19;

 

        /**

         * Lookup table for turning Base64 alphabet positions (6 bits)

         * into output bytes.

         */

        private static final byte ENCODE[] = {

            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',

            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',

            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',

            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',

        };

 

        /**

         * Lookup table for turning Base64 alphabet positions (6 bits)

         * into output bytes.

         */

        private static final byte ENCODE_WEBSAFE[] = {

            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',

            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',

            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',

            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',

        };

 

        final private byte[] tail;

        /* package */ int tailLen;

        private int count;

 

        final public boolean do_padding;

        final public boolean do_newline;

        final public boolean do_cr;

        final private byte[] alphabet;

 

        public Encoder(int flags, byte[] output) {

            this.output = output;

 

            do_padding = (flags & NO_PADDING) == 0;

            do_newline = (flags & NO_WRAP) == 0;

            do_cr = (flags & CRLF) != 0;

            alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;

 

            tail = new byte[2];

            tailLen = 0;

 

            count = do_newline ? LINE_GROUPS : -1;

        }

 

        /**

         * @return an overestimate for the number of bytes {@code

         * len} bytes could encode to.

         */

        public int maxOutputSize(int len) {

            return len * 8/5 + 10;

        }

 

        public boolean process(byte[] input, int offset, int len, boolean finish) {

            // Using local variables makes the encoder about 9% faster.

            final byte[] alphabet = this.alphabet;

            final byte[] output = this.output;

            int op = 0;

            int count = this.count;

 

            int p = offset;

            len += offset;

            int v = -1;

 

            // First we need to concatenate the tail of the previous call

            // with any input bytes available now and see if we can empty

            // the tail.

 

            switch (tailLen) {

                case 0:

                    // There was no tail.

                    break;

 

                case 1:

                    if (p+2 <= len) {

                        // A 1-byte tail with at least 2 bytes of

                        // input available now.

                        v = ((tail[0] & 0xff) << 16) |

                            ((input[p++] & 0xff) << 8) |

                            (input[p++] & 0xff);

                        tailLen = 0;

                    };

                    break;

 

                case 2:

                    if (p+1 <= len) {

                        // A 2-byte tail with at least 1 byte of input.

                        v = ((tail[0] & 0xff) << 16) |

                            ((tail[1] & 0xff) << 8) |

                            (input[p++] & 0xff);

                        tailLen = 0;

                    }

                    break;

            }

 

            if (v != -1) {

                output[op++] = alphabet[(v >> 18) & 0x3f];

                output[op++] = alphabet[(v >> 12) & 0x3f];

                output[op++] = alphabet[(v >> 6) & 0x3f];

                output[op++] = alphabet[v & 0x3f];

                if (--count == 0) {

                    if (do_cr) output[op++] = '\r';

                    output[op++] = '\n';

                    count = LINE_GROUPS;

                }

            }

 

            // At this point either there is no tail, or there are fewer

            // than 3 bytes of input available.

 

            // The main loop, turning 3 input bytes into 4 output bytes on

            // each iteration.

            while (p+3 <= len) {

                v = ((input[p] & 0xff) << 16) |

                    ((input[p+1] & 0xff) << 8) |

                    (input[p+2] & 0xff);

                output[op] = alphabet[(v >> 18) & 0x3f];

                output[op+1] = alphabet[(v >> 12) & 0x3f];

                output[op+2] = alphabet[(v >> 6) & 0x3f];

                output[op+3] = alphabet[v & 0x3f];

                p += 3;

                op += 4;

                if (--count == 0) {

                    if (do_cr) output[op++] = '\r';

                    output[op++] = '\n';

                    count = LINE_GROUPS;

                }

            }

 

            if (finish) {

                // Finish up the tail of the input.  Note that we need to

                // consume any bytes in tail before any bytes

                // remaining in input; there should be at most two bytes

                // total.

 

                if (p-tailLen == len-1) {

                    int t = 0;

                    v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;

                    tailLen -= t;

                    output[op++] = alphabet[(v >> 6) & 0x3f];

                    output[op++] = alphabet[v & 0x3f];

                    if (do_padding) {

                        output[op++] = '=';

                        output[op++] = '=';

                    }

                    if (do_newline) {

                        if (do_cr) output[op++] = '\r';

                        output[op++] = '\n';

                    }

                } else if (p-tailLen == len-2) {

                    int t = 0;

                    v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |

                        (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);

                    tailLen -= t;

                    output[op++] = alphabet[(v >> 12) & 0x3f];

                    output[op++] = alphabet[(v >> 6) & 0x3f];

                    output[op++] = alphabet[v & 0x3f];

                    if (do_padding) {

                        output[op++] = '=';

                    }

                    if (do_newline) {

                        if (do_cr) output[op++] = '\r';

                        output[op++] = '\n';

                    }

                } else if (do_newline && op > 0 && count != LINE_GROUPS) {

                    if (do_cr) output[op++] = '\r';

                    output[op++] = '\n';

                }

 

                assert tailLen == 0;

                assert p == len;

            } else {

                // Save the leftovers in tail to be consumed on the next

                // call to encodeInternal.

 

                if (p == len-1) {

                    tail[tailLen++] = input[p];

                } else if (p == len-2) {

                    tail[tailLen++] = input[p];

                    tail[tailLen++] = input[p+1];

                }

            }

 

            this.op = op;

            this.count = count;

 

            return true;

        }

    }

 

    private Base64() { }   // don't instantiate

}

 

package ghj1976.Demo;









import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.SecretKeyFactory;

import javax.crypto.spec.DESKeySpec;

import javax.crypto.spec.IvParameterSpec;





public class DES {

	 private static String DESKey = "12345678"; // 字节数必须是8的倍数  

	 private static byte[] iv1 = {(byte)0x12, (byte)0x34, (byte)0x56, (byte)0x78, (byte)0x90, (byte)0xAB, (byte)0xCD, (byte)0xEF};

	 public static void main(String[] args) {

		 System.out.print("xyz");

		DES des = new DES();

		System.out.print(des.encrypt("19760519"));

	} 

	 public byte[] desEncrypt(byte[] plainText) throws Exception  

	    {  

//	        SecureRandom sr = new SecureRandom();  	        

//	        sr.setSeed(iv);

	        

//	    	 IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));  

	    	IvParameterSpec iv = new IvParameterSpec(iv1);

	    	 

	        DESKeySpec dks = new DESKeySpec(DESKey.getBytes());  

	        SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");  

	        SecretKey key = keyFactory.generateSecret(dks);  

	        Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");  

	        cipher.init(Cipher.ENCRYPT_MODE, key, iv);  

	        byte data[] = plainText;  

	        byte encryptedData[] = cipher.doFinal(data);  

	        return encryptedData;  

	    }  

	      

	    public String encrypt(String input)   

	    {  

	    	String result = "input";

	        try {

				result = base64Encode(desEncrypt(input.getBytes()));

			} catch (Exception e) {

				// TODO Auto-generated catch block

				e.printStackTrace();

			}  

			return result;

	    }  

	      

	    public  String base64Encode(byte[] s)   

	    {  

	        if (s == null)  

	            return null;  

	        return Base64.encodeToString(s, Base64.DEFAULT);



	    }  

}

 

 

Object c 的加解密函数

//

//  Utility.h

//  TheDealersForum

//

//  Created by Hailong Zhang on 5/3/11.

//  Copyright 2011 Personal. All rights reserved.

//



#import <Foundation/Foundation.h>

#import <CommonCrypto/CommonDigest.h>

#import <CommonCrypto/CommonCryptor.h>





@interface Utility : NSObject {



}

+ (NSString *) udid;

+ (NSString *) md5:(NSString *)str;

+ (NSString *) doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt;

+ (NSString *) encryptStr:(NSString *) str;

+ (NSString *) decryptStr:(NSString	*) str;



#pragma mark Based64

+ (NSString *) encodeBase64WithString:(NSString *)strData;

+ (NSString *) encodeBase64WithData:(NSData *)objData;

+ (NSData *) decodeBase64WithString:(NSString *)strBase64;



@end

 

//

//  Utility.m

//  TheDealersForum

//

//  Created by Hailong Zhang on 5/3/11.

//  Copyright 2011 Personal. All rights reserved.

//







#import "Utility.h"

static NSString *_key = @"12345678";



static const char _base64EncodingTable[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

static const short _base64DecodingTable[256] = {

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -1, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, -2, -2, 63,

	52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, -2, -2, -2,

	-2,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,

	15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, -2,

	-2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

	41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,

	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2

};



@implementation Utility

+ (NSString *) udid

{

	return [Utility encryptStr:[[UIDevice currentDevice] uniqueIdentifier]];

}

+ (NSString *) md5:(NSString *)str



{

	

	const char *cStr = [str UTF8String];

	

	unsigned char result[CC_MD5_DIGEST_LENGTH];

	

	CC_MD5( cStr, strlen(cStr), result );

	

	return [NSString 

			

			stringWithFormat: @"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",

			

			result[0], result[1],

			

			result[2], result[3],

			

			result[4], result[5],

			

			result[6], result[7],

			

			result[8], result[9],

			

			result[10], result[11],

			

			result[12], result[13],

			

			result[14], result[15]

			

			];

	

}

+ (NSString *) encryptStr:(NSString *) str

{

	return [Utility doCipher:str key:_key context:kCCEncrypt];

}

+ (NSString *) decryptStr:(NSString	*) str

{

	return [Utility doCipher:str key:_key context:kCCDecrypt];

}

+ (NSString *)doCipher:(NSString *)sTextIn key:(NSString *)sKey

			   context:(CCOperation)encryptOrDecrypt {

	NSStringEncoding EnC = NSUTF8StringEncoding;

	

    NSMutableData * dTextIn;

    if (encryptOrDecrypt == kCCDecrypt) {    

        dTextIn = [[Utility decodeBase64WithString:sTextIn] mutableCopy];    

    }    

    else{    

        dTextIn = [[sTextIn dataUsingEncoding: EnC] mutableCopy];    

    }           

    NSMutableData * dKey = [[sKey dataUsingEncoding:EnC] mutableCopy];            

    [dKey setLength:kCCBlockSizeDES];        

    uint8_t *bufferPtr1 = NULL;    

    size_t bufferPtrSize1 = 0;    

    size_t movedBytes1 = 0;

    //uint8_t iv[kCCBlockSizeDES];

	//memset((void *) iv, 0x0, (size_t) sizeof(iv));

	Byte iv[] = {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF};

    bufferPtrSize1 = ([sTextIn length] + kCCKeySizeDES) & ~(kCCKeySizeDES -1);    

    bufferPtr1 = malloc(bufferPtrSize1 * sizeof(uint8_t));    

    memset((void *)bufferPtr1, 0x00, bufferPtrSize1);    

	CCCrypt(encryptOrDecrypt, // CCOperation op    

			kCCAlgorithmDES, // CCAlgorithm alg    

			kCCOptionPKCS7Padding, // CCOptions options    

			[dKey bytes], // const void *key    

			[dKey length], // size_t keyLength    

			iv, // const void *iv    

			[dTextIn bytes], // const void *dataIn

			[dTextIn length],  // size_t dataInLength    

			(void *)bufferPtr1, // void *dataOut    

			bufferPtrSize1,     // size_t dataOutAvailable 

			&movedBytes1);      // size_t *dataOutMoved    



	

    NSString * sResult;    

    if (encryptOrDecrypt == kCCDecrypt){    

        sResult = [[[ NSString alloc] initWithData:[NSData dataWithBytes:bufferPtr1     

																  length:movedBytes1] encoding:EnC] autorelease];    

    }    

    else {    

        NSData *dResult = [NSData dataWithBytes:bufferPtr1 length:movedBytes1]; 

        sResult = [Utility encodeBase64WithData:dResult];    

    }           

    return sResult;

}







+ (NSString *)encodeBase64WithString:(NSString *)strData {

	return [Utility encodeBase64WithData:[strData dataUsingEncoding:NSUTF8StringEncoding]];

}



+ (NSString *)encodeBase64WithData:(NSData *)objData {

	const unsigned char * objRawData = [objData bytes];

	char * objPointer;

	char * strResult;

	

	// Get the Raw Data length and ensure we actually have data

	int intLength = [objData length];

	if (intLength == 0) return nil;

	

	// Setup the String-based Result placeholder and pointer within that placeholder

	strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));

	objPointer = strResult;

	

	// Iterate through everything

	while (intLength > 2) { // keep going until we have less than 24 bits

		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];

		*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];

		*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];

		*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];

		

		// we just handled 3 octets (24 bits) of data

		objRawData += 3;

		intLength -= 3; 

	}

	

	// now deal with the tail end of things

	if (intLength != 0) {

		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];

		if (intLength > 1) {

			*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];

			*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];

			*objPointer++ = '=';

		} else {

			*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];

			*objPointer++ = '=';

			*objPointer++ = '=';

		}

	}

	

	// Terminate the string-based result

	*objPointer = '\0';

	

	// Return the results as an NSString object

	return [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];

}



+ (NSData *)decodeBase64WithString:(NSString *)strBase64 {

	const char * objPointer = [strBase64 cStringUsingEncoding:NSASCIIStringEncoding];

	int intLength = strlen(objPointer);

	int intCurrent;

	int i = 0, j = 0, k;

	

	unsigned char * objResult;

	objResult = calloc(intLength, sizeof(char));

	

	// Run through the whole string, converting as we go

	while ( ((intCurrent = *objPointer++) != '\0') && (intLength-- > 0) ) {

		if (intCurrent == '=') {

			if (*objPointer != '=' && ((i % 4) == 1)) {// || (intLength > 0)) {

				// the padding character is invalid at this point -- so this entire string is invalid

				free(objResult);

				return nil;

			}

			continue;

		}

		

		intCurrent = _base64DecodingTable[intCurrent];

		if (intCurrent == -1) {

			// we're at a whitespace -- simply skip over

			continue;

		} else if (intCurrent == -2) {

			// we're at an invalid character

			free(objResult);

			return nil;

		}

		

		switch (i % 4) {

			case 0:

				objResult[j] = intCurrent << 2;

				break;

				

			case 1:

				objResult[j++] |= intCurrent >> 4;

				objResult[j] = (intCurrent & 0x0f) << 4;

				break;

				

			case 2:

				objResult[j++] |= intCurrent >>2;

				objResult[j] = (intCurrent & 0x03) << 6;

				break;

				

			case 3:

				objResult[j++] |= intCurrent;

				break;

		}

		i++;

	}

	

	// mop things up if we ended on a boundary

	k = j;

	if (intCurrent == '=') {

		switch (i % 4) {

			case 1:

				// Invalid state

				free(objResult);

				return nil;

				

			case 2:

				k++;

				// flow through

			case 3:

				objResult[k] = 0;

		}

	}

	

	// Cleanup and setup the return NSData

	NSData * objData = [[[NSData alloc] initWithBytes:objResult length:j] autorelease];

	free(objResult);

	return objData;

}

@end

你可能感兴趣的:(object)