(转载请注明出处:http://blog.csdn.net/buptgshengod)
决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
算法的主要思想就是将数据集依照特征对目标指数的影响由高到低排列。行成一个二叉树序列,进行分类,例如以下图所看到的。
如今的问题关键就是,当我们有非常多特征值时,哪些特征值作为父类写在二叉树的上面的节点,哪下写在以下。我们能够直观的看出上面的特征值节点应该是对目标指数影响较大的一些特征值。那么怎样来比較哪些特征值对目标指数影响较大呢。这里引出一个概念,就是信息熵。
信息理论的鼻祖之中的一个Claude E. Shannon把信息(熵)定义为离散随机事件的出现概率。说白了就是信息熵的值越大就表明这个信息集越混乱。
信息熵的计算公式,(建议去wiki学习一下)
这里我们通过计算目标指数的熵和特征值得熵的差,也就是熵的增益来确定哪些特征值对于目标指数的影响最大。
def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} for featVec in dataSet: currentLabel=featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel]=0 labelCounts[currentLabel]+=1 shannonEnt=0.0 for key in labelCounts: prob =float(labelCounts[key])/numEntries shannonEnt-=prob*math.log(prob,2) return shannonEnt
def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] #chop out axis used for splitting reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet
def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0; bestFeature = -1 for i in range(numFeatures): #iterate over all the features featList = [example[i] for example in dataSet]#create a list of all the examples of this feature uniqueVals = set(featList) #get a set of unique values newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy if (infoGain > bestInfoGain): #compare this to the best gain so far bestInfoGain = infoGain #if better than current best, set to best bestFeature = i return bestFeature #returns an integer