最小费用最大流(转至Lost(转至威士忌)的代码)
)):
每次在s-t之间找出费用最小的一条路径即单源最短路,如果t点不再被访问到,则算法终止。否则,按着最短路径找出最小剩余容量c,最大流量加上 c,再更新最短路径上的边,前向弧减去c,反向弧加上c,并且造一条逆向的费用边,最小费用加上每条边的花销,每条边的花销=单位费用*c。
最小费用最大流既能求最小费用,又能得出最大流,是更为一般的模型。
牛人哈~~~自己也懒得看原理了,代码中使用了bellman-ford算法,貌似可以改进为spfa,会更好。
/* *** **** **** **** **** ****
网络中最小费用最大流
参数含义: n代表网络中的总节点数
net[][]代表剩余网络
cost[][]代表单位费用
path[]保存增广路径
ecost[]源点到各点的最短路
算法:初始最小费用和最大流均为,寻找单位费用最短路
在最短路中求出最大流,即为增广路,再修改剩余网络,直到无可增广路为止
返回值: 最小费用,最大流量
**** **** **** **** **** *** */
const int NMAX = 210 ;
int net[NMAX][NMAX], cost[NMAX][NMAX];
int path[NMAX], ecost[NMAX];
int n;
bool bellman_ford()
{
int i,j;
memset(path, - 1 , sizeof (path));
fill(ecost, ecost + NMAX, INT_MAX);
ecost[ 0 ] = 0 ;
bool flag = true ;
while (flag) {
flag = false ;
for (i = 0 ;i <= n;i ++ ) {
if (ecost[i] == INT_MAX) {
continue ;
}
for (j = 0 ;j <= n;j ++ ) {
if (net[i][j] > 0 && ecost[i] + cost[i][j] < ecost[j]) {
flag = true ;
ecost[j] = ecost[i] + cost[i][j];
path[j] = i;
}
}
}
}
return ecost[n] != INT_MAX;
}
int min_cost_max_flow()
{
int i,j;
int mincost = 0 , maxflow = 0 ;
while ( bellman_ford() ) {
int now = n;
int neck = INT_MAX;
while (now != 0 ) {
int pre = path[now];
neck = min(neck, net[pre][now]);
now = pre;
}
maxflow += neck;
now = n;
while (now != 0 ) {
int pre = path[now];
net[pre][now] -= neck;
net[now][pre] += neck;
cost[now][pre] = - cost[pre][now];
mincost += cost[pre][now] * neck;
now = pre;
}
}
return mincost;
}
spfa+静态邻接表
/* 存边的时候注意前向弧存在Edge数组的偶数里面,后向弧存在奇数里面,并且相差1 */
#include < iostream >
#include < queue >
using namespace std;
#define fmax(a,b) (a>b?a:b)
#define fmin(a,b) (a<b?a:b)
const long inf = 1e9;
const long maxn_edge = 10005 ;
const long maxn_point = 105 ;
int Index;
int n,m;
struct node
{
int to;
int c; // 容量
int w; // 费用
int next;
}Edge[maxn_edge];
int pre[maxn_point];
int dir[maxn_point],path_v[maxn_point],path_e[maxn_point],vis[maxn_point]; // 求最短路
queue < int > Q;
inline void _insert( int from, int to, int c, int w)
{
Edge[Index].to = to;
Edge[Index].c = c;
Edge[Index].w = w;
Edge[Index].next = pre[from];
pre[from] = Index ++ ;
}
void insert( int from, int to, int c, int w)
{
_insert(from,to,c,w);
_insert(to,from, 0 , - w);
}
int Init()
{
// CODE
return 1 ;
}
int min_cost_max_flow( int start, int end)
{
int i;
int min_cost = 0 ,max_flow = 0 ;
while ( true )
{
memset(path_v, - 1 , sizeof (path_v));
memset(path_e, - 1 , sizeof (path_e));
memset(vis, 0 , sizeof (vis));
fill(dir,dir + maxn_point,inf);
dir[start] = 0 ;
Q.push(start);
vis[start] = true ;
while ( ! Q.empty())
{
int x = Q.front();
vis[x] = false ;
Q.pop();
for (i = pre[x];(i + 1 );i = Edge[i].next)
{
int y = Edge[i].to;
if (Edge[i].c && dir[y] > dir[x] + Edge[i].w)
{
dir[y] = dir[x] + Edge[i].w;
if ( ! vis[y])
{
vis[y] = true ;
Q.push(y);
}
path_v[y] = x,path_e[y] = i;
}
}
}
if (path_v[end] == - 1 ) // dir[end] == inf
break ;
int Min = inf;
for (i = end;i != start;i = path_v[i])
{
Min = fmin(Min,Edge[path_e[i]].c);
}
max_flow += Min;
min_cost += Min * dir[end];
for (i = end;i != start;i = path_v[i])
{
Edge[path_e[i]].c -= Min;
Edge[path_e[i] ^ 1 ].c += Min;
}
}
return min_cost;
}
int main()
{
while (Init())
{
int num = min_cost_max_flow( 1 ,n);
printf( " %d\n " ,num);
}
return 0 ;
}