- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【向上教育】国企面试手册(OCR).pdf
㏕追忆似水年华あ
人工智能大数据算法旅游c语言
国企各省面试的形式主要是结构化面试,也有少部分单位采用无领导小组讨论的面试形式。全面了解面试形式是考生须知的重要信息之一。一、结构化面试结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据科学制定的评价指标,运用特定的问题、评价方法和评价标准,严格遵循特定程序,通过测评人员与被测试者进行语言交流,对被测试者进行评价的标准化过程。(一)结构化面试之三大规范1.考题规范化(1)测评要素一
- 【学习】《算法图解》第七章学习笔记:树
自学也学好编程
程序人生
前言在前面的章节中,我们学习了数组、链表、散列表等基本数据结构,以及一些基础算法。本章将介绍一种非常重要的数据结构——树(Tree),特别是二叉搜索树(BinarySearchTree)。树结构在计算机科学中应用广泛,从文件系统到数据库再到人工智能,都能看到树的身影。《算法图解》第七章深入浅出地介绍了树的基本概念、实现和应用,帮助读者理解这一关键数据结构。一、树的基本概念(一)什么是树树是一种分层
- 日语基础复习 Day01
karenkou
日语初级复习经验分享其他
日语基础复习Day011.~~は~~n+は+nです/ですか/ではありません/じゃありませんn+の+n例:王さんは大学生です。東京の大学2.これ/それ/あれ/どれこれ/それ/あれ~はどれですか~は何ですか~は誰ですか例:これは私のカバンです。日本の漫画はどれですか。アイスコーヒーはどれですか★おすすめはどれですか。(餐厅常用语,您的推荐是哪一个)これは何ですか。彼はだれですか。★誰⇒どなた(尊敬の形
- 【高频考点精讲】前端动画库对比:GSAP、Anime.js和Motion One选型
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端动画库三剑客:GSAP、Anime.js和MotionOne选型指南作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端动画库这个事儿。作为"全栈老李",我在项目里用过不少动画库,踩过坑也尝过甜头。现在市面上动画库五花八门,但真正能打的就那几个。今天重点说说GSAP、Anime.js和MotionOne这三个,帮你
- 一篇文章读完50篇摄影教程(托马斯的2016总结)
weixin_30341745
photoshop人工智能
作者:Thomas看看世界链接:https://zhuanlan.zhihu.com/p/24654853来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。2016年,托马斯精心原创和精选转载了近50篇摄影教程。从拍摄思路到修图技术,从前期滤镜到后期工具,从风光人像到手机摄影。每篇教程,都是托马斯利用周末时间,策划、编写和制作完成的。托马斯制作教程,并不是为了显摆自己有
- C++快速排序算法详解与实现
小小的博客
排序算法c++算法排序算法c++排序算法
快速排序(QuickSort)是一种高效的排序算法,由英国计算机科学家东尼·霍尔(TonyHoare)于1960年发明。本文将详细讲解快速排序算法的原理和实现,并通过C++语言展示其代码实现。1.快速排序算法原理快速排序算法的基本思想是分治法(DivideandConquer),其核心步骤如下:1.选择一个基准元素(pivot),通常选择序列中的第一个或最后一个元素。2.将序列分为两部分,一部分是
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- Golang学习日志 ━━ 单向链表
暂时先用这个名字
Golanggogolang
因为转载必须指明原文网址,而本文内容整合了网上多篇技术文章,无法明确其中一条,所以选择了原创。已在最后的参考目录里列出本文所有涉及的文章。定义单向链表(单链表)是链表的一种,是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素。其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始;链表是由结点构成,head指针指向第一个成为表头结点,而终止于最后一个指向nuLL
- python与anaconda安装(先安装了python后安装anaconda,基于python已存在的基础上安装anaconda)——逼死强迫症、超详解
苹果酱0567
面试题汇总与解析java开发语言中间件springboot后端
版权声明:本文为CSDN博主「牛斌帅」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_43529415/article/details/100847887目录一、安装python(python3.7.4)1、下载(1)下载1(32位)(2)下载2(64位)2、安装3、配置python环境变量4、检验pytho
- 四个机器学习模型对比道路裂缝检测识别分类模型
深度学习乐园
深度学习实战项目机器学习分类人工智能
完整源码项目包获取→点击文章末尾名片!一、课题综述1.1.课题简介在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景也各不相同。1.2.课题目标(示例)本课题使用的数据集来自于数据分析与数据挖掘竞赛Kaggle,该竞赛为数据科学领域著名的国际性赛事之一。课题使用的数据集为带标签的图像数据集,包含带有裂痕和不带有裂痕的桥梁、墙和人行道图片。课题的目标为对于目标数据集,搭建相应的传统机器
- 基于STM32的智能室内光照控制系统
01单片机设计
单片机stm32嵌入式硬件单片机
摘要进入到21世纪的时代,经济持续快速发展,人们生活的质量显著提高,“绿色健康生活”这一理念已经成为现代人的热门话题。相对于传统的家居用品,人们更倾向于使用“智能化”、“多功能”、“自动化”的智能家居用品,其中智能家居照明系统就是典型之一。它能有效率,方便地管理室内照明情况,不需要每次手动开关,提供了科学的管理系统,以达到减少耗能、绿色生活的目的。基于上述情况,本人毕业设计选题是智能室内光照控制系
- RAG应用的评估(一)
AI老炮
AIGCai机器学习人工智能语言模型
前言上篇文档主要是对Advanced-RAG的定义、策略和适用场景做了一个细致的分析,那么当我们准备将一个基于大模型的RAG应用投入生产时,如何去判断这个RAG是否合理呢?下面有一些问题是需要提前考并应付的:LLM输出的不确定性会带来一定的不可预知性。一个RAG应用在投入生产之前需要科学的测试以衡量这种不可预知性。在LLM应用上线后的持续维护中,需要科学、快速、可复用的手段来衡量其改进效果,比如回
- 【开源项目】「安卓原生3D开源渲染引擎」:Sceneform‑EQR
「安卓原生3D开源渲染引擎」:Sceneform‑EQR渲染引擎“那一夜凌晨3点,第一次提交PR的手在抖……”——我深刻体会这种忐忑与激动。仓库地址:(github.com)。一、前言:开源对我意味着什么DIY的自由Vs.工业化的束缚刚入Android原生开发时,我习惯自己在项目里嵌入各种3D渲染/AR/XR模块,结构臃肿、流程混乱。当我知道GoogleSceneformSDK被弃用,起初只是出于
- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- C++高精度除以高精度
洛谷题真多
算法c++算法
高精度除以高精度的问题,在计算机科学中是一个常见的挑战,特别是在处理非常大的数字时,这些数字超出了标准数据类型(如int或longlong)的范围。这里,我们将详细解释一种常见的方法来解决这个问题:模拟手工除法。基本思路模拟手工除法的过程,即将一个高精度数(被除数)除以另一个高精度数(除数),并逐位计算商和余数。步骤详解初始化:设定被除数A和除数B(均为高精度数
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 虚拟空间中的AI协作与任务
AI天才研究院
ChatGPTAI大模型企业级应用开发实战AI人工智能与大数据大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
虚拟空间与AI概述在当今信息化和数字化的时代,虚拟空间(VirtualSpace)已成为人们生活和工作的重要一部分。虚拟空间是一种通过计算机技术构建的虚拟环境,它能够模拟和增强现实世界中的各种交互和体验。而人工智能(AI)作为计算机科学的一个分支,通过模拟人类的认知能力来实现自动化和智能化的决策。虚拟空间与AI的结合,不仅为人类带来了全新的交互方式,也为各行业的发展注入了强大的动力。虚拟空间的定义
- 如何制作一份E-R图
菜汪本汪
数据库
ER模型,全称为实体联系模型、实体关系模型或实体联系模式图(ERD)(英语:Entity-relationshipmodel)由美籍华裔计算机科学家陈品山发明,是概念数据模型中高层描述所使用的数据模型或模式图。ER模型常用于信息系统设计中。比如,在概念结构设计阶段,ER模型用来描述信息需求和/或要存储在数据库中的信息类型,但是数据建模技术可以用来描述特定论域(感兴趣的区域)的任何本体(对使用的术语
- 学习AI机器学习所需的数学基础
frostmelody
机器学习小知识点人工智能学习机器学习
一、机器学习岗位的数学需求矩阵机器学习岗位研究型职位工业界职位DeepMind/Meta/Google研究部门研究科学家/研究工程师普通科技公司机器学习工程师/数据科学家需硕士/博士数学水平本科数学基础二、数学需求深度解析1.研究型职位(需深度数学)学历要求:数学/物理/计算机/统计/工程本科基础硕士/博士优先(Kaggle调查显示博士占比高)薪资关联:学历与收入呈正相关2.工业界职位(基础数学)
- 学生综合评价系统详细设计与具体代码实现
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1教育评价的现状与挑战传统的学生评价体系主要依赖于考试成绩,忽略了学生在其他方面的表现,例如学习态度、课堂参与、合作精神等。这种单一的评价方式难以全面反映学生的综合素质,也无法满足个性化教育的需求。随着教育改革的不断深入,建立多元化、科学化的学生综合评价体系势在必行。1.2学生综合评价系统的意义学生综合评价系统旨在建立一套科学、公正、全面的评价体系,涵盖学生的各个方面,包括:学业成
- 基于ssm的创新创业项目管理系统
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1创新创业项目管理的现状与挑战近年来,随着“大众创业、万众创新”的政策推动和社会氛围的日益浓厚,创新创业项目如雨后春笋般涌现。然而,项目的启动、执行、监控和评估等环节仍然面临着诸多挑战:信息分散,难以整合:项目信息分散在各个平台和部门,难以有效整合和共享,导致信息孤岛和沟通障碍。流程繁琐,效率低下:项目申报、审批、验收等流程繁琐,效率低下,浪费了大量的时间和精力。缺乏科学的评估体系
- Jupyter完全指南:一文搞定Notebook和Lab的所有玩法
network爬虫
JupyterNotebookjupyterpythonide数据分析
Jupyter完全指南:一文搞定Notebook和Lab的所有玩法目录引言:为什么Jupyter是数据科学家的最爱Jupyter生态系统概览JupyterNotebookvsJupyterLab:选择哪一个?安装与环境配置Notebook基础操作详解Magic命令:让你的工作流更高效JupyterLab高级功能探索实战案例:数据分析项目完整流程扩展插件与自定义配置性能优化与最佳实践常见问题解答总结
- macOS 26 Blank OVF - macOS Tahoe 虚拟化解决方案
macOS26BlankOVF-macOSTahoe虚拟化解决方案适用于VMwareESXi和VMwareWorkstation的macOSTahoe虚拟化模板请访问原文链接:https://sysin.org/blog/macos-26-ovf/查看最新版。原创作品,转载请保留出处。作者主页:sysin.org预留页面,预计正式版发布时更新。请访问原文链接关注更新。更多:macOS下载汇总(系统
- 2025高考北京及周边理工科大学信息
东北豆子哥
高考
文章目录清华大学**1.工程与技术类(全球顶尖)****2.自然科学类****3.生命科学与医学****4.社会科学与管理类****5.人文与艺术类****6.交叉学科与新兴领域****国内学科评估参考(教育部第四轮学科评估)****选择建议**北京航空航天大学**1.航空航天类(全国顶尖)****2.信息与工程类(国内领先)****3.基础科学与工程技术****4.新兴交叉学科****5.理科与
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- 学习笔记丨信号处理新趋势:量子计算将如何颠覆传统DSP?
棱镜研途
量子计算信号处理学习人工智能单片机网络安全密码学
在算力需求爆炸式增长的今天,传统数字信号处理(DSP)芯片正面临物理极限的严峻挑战。当经典计算机架构在摩尔定律的黄昏中挣扎时,量子计算正以颠覆性姿态崛起,准备重新定义信号处理的未来图景。目录传统DSP的瓶颈:经典架构的物理极限量子新突破:从理论优越到实用跨越量子DSP的颠覆性优势:算法与架构的双重变革应用场景:从芯片校准到生命科学技术挑战与产业化路径未来已来:量子重塑信号处理传统DSP的瓶颈:经典
- DIY语音控制车辆玩具全攻略:从硬件组装到功能实现
欧阳天羲
硬件工程语音识别自动驾驶
一、设备清单与成本估算1.1硬件组件列表组件名称价格(元)备注ArduinoUno兼容板7.04控制核心,支持多传感器接入DFRobot离线语音识别模块105支持10条自定义语音指令L298N电机驱动板5双路电机驱动,带散热片直流减速电机×2(JGB37-520)3012V供电,150转/分钟SG90微型舵机5控制前轮转向HC-SR04超声波传感器2.45测距范围2-400cm18650锂电池(3
- 代数几何:自然曲线的数学研究
AI天才研究院
ChatGPT计算AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
代数几何:自然曲线的数学研究关键词:代数几何、自然曲线、数学研究、算法、应用摘要:本文深入探讨了代数几何在自然曲线研究中的应用,从基础概念到复杂算法,再到实际项目实战,全面揭示了代数几何在数学研究中的核心地位和深远影响。本文旨在为读者提供一份系统、完整、易于理解的技术指南,帮助深入理解自然曲线的数学本质及其在计算机科学中的广泛应用。目录大纲设计思路为了设计出《代数几何:自然曲线的数学研究》这本书的
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><