索引对于查询的速度至关重要,理解索引也是数据库调优的起点。
1. 建立索引前,先设计好建立索引列的数据类型。
1)越小的数据类型性能越好:因为越小的数据类型对于硬盘读取、内存、CPU缓存都需要更少的空间,处理起来更快。
2)简单的数据类型更好:整型比字符型更好。
3)尽量避免使用NULL: 建立索引的列最好是Not Null约束的,如果一定要用NULL,可以用0或者某特殊值替代。因为在MySQL中,对于NULL的值很难进行查询优化,因为他们使得索引的计算更加复杂。
2. 索引概述:
对于任何关系型数据库,索引都是进行优化的最主要因素。对于少量的数据,不必使用索引。
如果对于多列进行索引(组合索引),列的顺序非常中意。MySQL仅对索引最左边的前缀进行有效的查找。
例如:存在组合索引(c1, c2), 查询语句select * from t1 where c1=1 and c2=2能够使用该索引。select * from t1 where c1=1也能够使用该索引。但select * from t1 where c2=2不能使用该索引。
理由是,没有组合索引的引导列,即,要想使用c2列进行索引,必须出现c1等于某值。
2.1 索引的类型
索引与引擎的关系:
索引是在存储引擎中实现的,而不是在服务器层中实现的。所以每种存储引擎的索引都不一定相同,并不是所有的存储引擎都支持所有的索引类型。
2.1.1 B-Tree索引
假如有一个表:
create table people (
last_name varchar(50) not null,
first_name varchar(50) not null,
dob date not null,
gender enum('m', 'f') not null,
key(last_name, first_name, dob)
);
其索引包含了表中每一行的last_name, first_name, dob列。
索引存储的值按照索引列中的顺序排序(先last_name, 在first_name, 再dob). 可以用B-Tree索引进行全关键字、关键字范围、关键字前缀进行查询。
所以可以对如下情形生效:
1)匹配全值(Match the full value): 对索引中所有列都指定具体的值。例如查找出1960-01-01出生的Cuba Allen.
2)匹配最左前缀(Match a leftmost prefix): 可以利用索引查找last_name为Allen的人。
3)匹配列前缀(Match a column prefix): 可以列用索引查找last_name为J开头的人,仅仅使用索引中的第一列。
4)匹配值的范围查询(Match a range of values): 可以利用索引查找last_name在Allen和Barrymore之间的人,仅仅使用索引中的第一列。
5)匹配部分精确而其他部分进行范围匹配(Match one part exactly and match a range on another part): 可以利用索引查找last_name为Allen, 而first_name为K开头的人。
因为B-Tree中的节点都是顺序存储的,所以可以利用索引进行查找(找到某值),也可以对查询结果order by.
使用B-Tree索引有下面的限制:
1)查询必须从索引的最左边的列开始
2)不能跳过某一列索引:即不能利用索引查询last_name为Allen, 且1980-01-01出生的人。必须先查first_name后再查dob.
3)存储引擎不能使用索引中范围条件右边的列。例如:where last_name='Smith' and first_name like 'J%' and dob='1976-01-02', 则索引只对last_name和first_name有效,因为like是范围查询。
2.1.2 Hash索引
MySQL中,只有Memory存储引擎支持hash索引,是Memory引擎默认的索引类型。尽管Memory表也可以使用B-Tree索引。
3. 高性能的索引策略
3.1 聚簇索引(Clustered Indexes) -- 在MySQL的InnoDB引擎中,主键索引就是聚簇索引。
聚簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不适合创建索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只能有一个聚簇索引。
目前,支持聚簇索引的引擎只有InnoDB和solidDB.
3.1.1 聚簇索引和非聚簇索引的区别:InnoDB引擎支持聚簇索引,而MyISAM不支持聚簇索引。
例如:
create table layout_test (
col1 int NOT NULL,
col2 int NOT NULL,
primary key(col1),
key(col2)
);
假设主键位于1--10000之间,且按随机顺序插入,然后由optimize table进行优化。col2随机赋予1--100之间的值,所以会存在许多重复的值。
1)MyISAM的布局:
MyISAM按照插入的顺序在磁盘上存储数据。
注:MyISAM不支持聚簇索引,索引中每一个叶子节点仅仅包含行号(row number), 且叶子节点按照col1的顺序存储。
2)InnoDB的布局:
InnoDB按聚簇索引的形式存储数据。
注:聚簇索引总每个叶子节点包含primary key的值,事务ID和回滚指针(rollback pointer).
3.2 覆盖索引(Covering Indexes)
如果索引包含满足查询的所有数据,就成为覆盖索引。
覆盖所有有如下好处:
1)索引项通常比记录要小,所以MySQL访问更好的数据。
2)索引都按值的大小顺序存储,相对于随机访问记录,需要更少的IO.
3)大多数数据引擎更好的缓存了索引。比如MySQL只缓存索引。
4)覆盖索引对于InnoDB表尤其有用,因为InnoDB使用聚簇索引组织数据,如果二级索引中包含所需的数据,就不需要在索引中查找了。
3.3 利用索引进行排序
MySQL中,有两种方式生成有序的结果集:一是使用filesort, 二是按索引顺序扫描。
利用索引进行排序非常快,且可以利用同一索引同时进行查找和排序操作。
当索引的顺序与order by的列顺序相同时,且所有的列是同一方向(全部升序或者全部降序)时,可以用索引排序。
如果查询时多表连接,仅当order by中所有的列都是第一个表的列时,索引才会生效。其他情况都会使用filesort.
例如:
create table actor (
actor_id int unsigned not null auto_increment,
name varchar(16) not null default,
password varchar(16) not null default,
primary key(actor_id),
key(name)
) engine=InnoDB
insert into actor(name,password) values('cat01','1234567');
insert into actor(name,password) values('cat02','1234567');
insert into actor(name,password) values('ddddd','1234567');
insert into actor(name,password) values('aaaaa','1234567');
mysql>explain select actor_id from actor order by actor_id;
结果:
id:1
select_type:SIMPLE
table:actor
type:index
possible_keys:NULL
key:PRIMARY
ref:NULL
rows:4
Extra:Using index
1 row in set(0.00 sec)
mysql>explain select actor_id from actor order by password;
结果:
id:1
select_type:SIMPLE
table:actor
type:index
possible_keys:NULL
key:NULL
key_len:NULL
ref:NULL
rows:4
Extra:Unsing filesort
1 row in set(0.00 sec)
mysql>explain select actor_id from actor order by name;
结果:
id:1
select_type:SIMPLE
table:actor
type:index
possible_key:NULL
key:name
key_len:18
ref:NULL
rows:4
Extra:Using index
当MySQL不能使用索引进行排序时,就会利用自己的排序算法(快速排序算法)在内存(sort buffer)中对数据进行排序。如果内存装载不下,它会将磁盘上的数据进行分块,再对各个数据块进行排序,然后将各个数据库合并成有序的结果集。
3.4 索引与加锁
索引对于InnoDB非常重要,因为它可以让查询锁定更少的元组。因为InnoDB直到事务提交时才会解锁。有两个原因:
1. 即使InnoDB行级锁非常高效,内存开销非常小,但还是存在开销。
2. 对不需要的元组加锁,会增加锁的开销,降低并发性能。
InnoDB仅对需要访问的元组加锁,而索引能够减少InnoDB访问的元组数。
===========================
MyISAM和InnoDB的区别:
1. 事务处理:MyISAM不支持,InnoDB支持
2. 性能:MyISAM好于InnoDB
3. fulltext索引:MyISAM支持,InnoDB不支持
4. select count(*) from table1; MyISAM效率好:MyISAM仅读出保存好的行数,而InnoDB要扫描一遍整个表。
5. auto_increment: MyISAM可以用该列与其他列一起建立联合索引,而InnoDB只支持包含只有该字段的索引。
6. delect from table; InnoDB会一行一行删除,不会重新建立表。
综上,MyISAM和InnoDB的主要区别是,InnoDB支持事务处理和行级锁。而MyISAM不支持,所以MyISAM往往被认为只适合在小项目中应用。
MyISAM的好处:
1. 对于读多写少的情形,MyISAM的性能比InnoDB好很多。
2. MyISAM的索引和数据是分开的,并且索引是有压缩的,这样内存使用率就提高了不少。而InnoDB的索引和数据是紧密捆绑的,并没有使用压缩,从而会造成InnoDB的体积更庞大。
一般来说,MyISAM适合:
1. 做很多count计算
2. 插入不频繁,查询非常频繁
3. 没有事务
InnoDB适合于:
1. 可靠性要求比较高,或者要求事务
2. 表更新和查询都非常的频繁,并且表锁定的机会比较大。
============================
MySQL的explain
explain的作用是显示了MySQL如何使用索引来处理select语句以及连接表。可以帮助选择更好的索引和写出更优化的查询语句。
使用方法:在select语句前加上explain就可以了。
例如:explain select surname, first_name from a, b where a.id=b.id
分析结果形式如下:
table | type | possible_keys | key | key_len | ref | rows | extra
分别解释如下:
1. table:显示这一行的数据是关于哪张表的
*2. type:显示连接使用了哪种类型。最好到最差的连接类型为:const, eq_reg, ref, range, index, ALL
3. possible_key: 显示可以应用在这张表上的索引。
*4. key: 实际使用的索引。如果为NULL, 则没有使用索引。
5. key_len: 索引的长度
6. ref: 显示索引的哪一列被使用了。
7. rows: MySQL认为必须检查的用来返回请求数据的行数。
*8. extra: 额外信息:
1)distinct: 一旦找到与行相匹配的行,就不再搜索了。
2)not exist: MySQL优化了左连接,一旦它找到了匹配left join标准的行,就不再搜索了。
3)using filesort: 指Mysql将用外部排序而不是按照index顺序排列结果。数据较少时从内存排序,否则从磁盘排序。Explain不会显示的告诉客户端用哪种排序。
4)using index: 表示Mysql使用覆盖索引避免全表扫描,不需要再到表中进行二次查找数据。
已有
0 人发表留言,猛击->>
这里<<-参与讨论
ITeye推荐