libSVM 参数解释

运行libsvm官网提供的转换后的UCI a1a数据集的结果:

数据集下载地址:http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a1a

*
optimization finished, #iter = 537
nu = 0.4602701289755638
obj = -673.0314153588002, rho = 0.6283368113816543
nSV = 754, nBSV = 722
Total nSV = 754
Accuracy = 83.58638066933712% (25875/30956) (classification)

其中, #iter为迭代次数, nu是你选择的核函数类型的参数, obj为SVM文件转换为的二次规划求解得到的最小值, rho为判决函数的偏置项b, nSV 为标准支持向量个数(0<a[i]<c), nBSV为边界上的支持向量个数(a[i]=c), Total nSV为支持向量总个数(对于两类来说,因为只有一个分类模型Total nSV = nSV,但是对于多类,这个是各个分类模型的nSV之和)。
在目录下,还可以看到产生了一个train.model文件,可以用记事本打开,记录了训练后的结果。
svm_type c_svc //所选择的svm类型,默认为c_svc
kernel_type rbf//训练采用的核函数类型,此处为RBF核
gamma 0.0769231//RBF核的参数γ
nr_class 2//类别数,此处为两分类问题
total_sv 132//支持向量总个数
rho 0.424462//判决函数的偏置项b
label 1 -1//原始文件中的类别标识
nr_sv 64 68//每个类的支持向量机的个数
SV//以下为各个类的权系数及相应的支持向量
1 1:0.166667 2:1 3:-0.333333 … 10:-0.903226 11:-1 12:-1 13:1
0.5104832128985164 1:0.125 2:1 3:0.333333 … 10:-0.806452 12:-0.333333 13:0.5
………..
-1 1:-0.375 2:1 3:-0.333333…. 10:-1 11:-1 12:-1 13:1
-1 1:0.166667 2:1 3:1 …. 10:-0.870968 12:-1 13:0.5
到现在,第一次体验libsvm到这就基本结束了,其他的两个(svm-predict、svm-scale)的使用过程类似。怎么样,挺爽的吧。对于个别参数你还不理解,没关系,下面我们会具体讲到。
-Parameters: parameters
-nr_class: number of classes; = 2 for regression/one-class svm
-totalSV: total #SV
-rho: -b of the decision function(s) wx+b
-Label: label of each class; empty for regression/one-class SVM
-ProbA: pairwise probability information; empty if -b 0 or in one-class SVM
-ProbB: pairwise probability information; empty if -b 0 or in one-class SVM
-nSV: number of SVs for each class; empty for regression/one-class SVM
-sv_coef: coefficients for SVs in decision functions
-SVs: support vectors

你可能感兴趣的:(参数,libsvm)