Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
[分析] 使用bfs思路解决:维护一个层级遍历队列,考察当前层的每个单词,通过修改一个字母得到的新单词若出现在dict中则将新单词添加到考察队列的下一层中,且将该新单词从dict中删除,以避免出现hot-dot-hot的死循环,一层遍历完后考察下一层。bfs保证第一次找到endWord肯定是最短路径,因为bfs是层次遍历,同一层每个单词到beginWord的变换距离是相等的。参考
http://www.cnblogs.com/TenosDoIt/p/3443512.html
public class Solution {
public int ladderLength(String beginWord, String endWord, Set<String> wordDict) {
if (beginWord == null || endWord == null || wordDict == null)
return -1;
LinkedList<String> queue = new LinkedList<String>();
queue.offer(beginWord);
int len = 0;
int currLevel = 0, nextLevel = 1;
int L = beginWord.length();
while (!queue.isEmpty()) {
if (currLevel == 0) {
currLevel = nextLevel;
nextLevel = 0;
len++;
}
char[] curr = queue.poll().toCharArray();
for (int i = 0; i < L; i++) {
char oldChar = curr[i];
for (char c = 'a'; c <= 'z'; c++) {
if (c == oldChar) continue;
curr[i] = c;
String newWord = new String(curr);
if (newWord.equals(endWord))
return len + 1;
else if (wordDict.contains(newWord)) {
nextLevel++;
queue.offer(newWord);
wordDict.remove(newWord);
}
}
curr[i] = oldChar;
}
currLevel--;
}
return 0;
}
}