环境
Windows Server 2003 x64 简体中文, MySQL 5.5 (UTF8编码), PostgreSQL 9.1.4-1 (UTF8编码)
Spring 3.0.7, Struts 2.3.4, Hibernate 3.5.5
从MySQL迁移到PostgreSQL
-----------------------------分隔线-----------------------------
* 分页写法的区别
|
PostgreSQL |
MySQL |
LIMIT 数量 |
支持 |
支持 |
LIMIT 下标, 数量 |
不支持 |
支持 |
LIMIT 数量 OFFSET 下标 |
支持 |
支持 |
SELECT * FROM user LIMIT 10; -- PostgreSQL与MySQL均支持 SELECT * FROM user LIMIT 10, 10; -- PostgreSQL不支持,MySQL支持 SELECT * FROM user LIMIT 10 OFFSET 10; -- PostgreSQL与MySQL均支持-----------------------------分隔线-----------------------------
CREATE TABLE users ( id INT(11) NOT NULL AUTO_INCREMENT, name VARCHAR(50) NOT NULL, PRIMARY KEY (id) );
CREATE TABLE users( id serial NOT NULL, name VARCHAR(50) NOT NULL, PRIMARY KEY (id ) );
-- 更安全有效的解决方案请参考http://stackoverflow.com/questions/244243/how-to-reset-postgres-primary-key-sequence-when-it-falls-out-of-sync/* 假如有表a从MySQL迁移过来,其中有数据100条,若在建立此表时没有指定序列,PG会默认给此表的主键列一个 sequence——它是增长的,幅度为1。此时若用Hibernate来给表a添加数据会报错,说主键1已经存在! 所以可以在迁移表之后,将表的sequence作少许修改,让其从当前表的主键的最大值再加1来开始!即可解决 Hibernate添加数据时报错的问题 ALTER SEQUENCE "public"."表名_主键名_seq" RESTART WITH (PK的最大值 + 1); 或 ALTER SEQUENCE 表名_主键名_seq RESTART WITH (PK的最大值 + 1); e.g. ALTER SEQUENCE file_types_id_seq" RESTART WITH 10; 从上面stackoverflow.com网站上得到的更加简单有效的一句SQL语句如下: SELECT pg_catalog.setval(pg_get_serial_sequence('table_name', 'id'), (SELECT MAX(id) FROM table_name)+1); */
DROP TABLE IF EXISTS recipient_recipientgroup; CREATE TABLE IF NOT EXISTS recipient_recipientgroup ( id serial NOT NULL, recipient_id INTEGER DEFAULT NULL, recipient_group_id INTEGER DEFAULT NULL, PRIMARY KEY (id), KEY FK_recipient_recipientgroup_recipient (recipient_id), KEY FK_recipient_recipientgroup_recipient_group (recipient_group_id), CONSTRAINT FK_recipient_recipientgroup_recipient FOREIGN KEY (recipient_id) REFERENCES recipient (id), CONSTRAINT FK_recipient_recipientgroup_recipient_group FOREIGN KEY (recipient_group_id) REFERENCES recipient_group (id) );
DROP TABLE IF EXISTS recipient_recipientgroup; CREATE TABLE IF NOT EXISTS recipient_recipientgroup ( id serial NOT NULL, recipient_id INTEGER DEFAULT NULL, recipient_group_id INTEGER DEFAULT NULL, PRIMARY KEY (id), -- KEY FK_recipient_recipientgroup_recipient (recipient_id), -- KEY FK_recipient_recipientgroup_recipient_group (recipient_group_id), CONSTRAINT FK_recipient_recipientgroup_recipient FOREIGN KEY (recipient_id) REFERENCES recipient (id), CONSTRAINT FK_recipient_recipientgroup_recipient_group FOREIGN KEY (recipient_group_id) REFERENCES recipient_group (id) );
/** * 参考SpringSide3,统一定义id的entity基类. * * 基类统一定义id的属性名称、数据类型、列名映射及生成策略. * 子类可重载getId()函数重定义id的列名映射和生成策略. */ //JPA 基类的标识 @MappedSuperclass public abstract class IdEntity { protected Long id; @Id // @GeneratedValue(strategy = GenerationType.AUTO) @GeneratedValue(strategy = GenerationType.IDENTITY) @Column(unique = true, nullable = false) public Long getId() { return this.id; } public void setId(Long id) { this.id = id; } }
* 代码中的SQL/HQL 更改
public List<LeakageDetail> findExceptLeakageDetailList(String ids) { String queryString = "SELECT * FROM leakage_detail " + "WHERE " // -- DATE_FORMAT(find_date, '%Y%m')<(DATE_FORMAT(NOW(), '%Y%m')-1) AND + "CONCAT(find_date, find_process) IN ( " + "SELECT CONCAT(find_date, find_process) AS xx " + "FROM leakage_detail WHERE id IN(" + ids + ")" + "GROUP BY find_date, find_process " // + "HAVING COUNT(xx)>5)"; // 这种写法MySQL支持,PostgreSQL不支持! + "HAVING COUNT(CONCAT(find_date, find_process))>5) AND id IN(" + ids + ") ORDER BY find_date, find_process"; logger.info("Leakage模块数据导入时发送漏液异常邮件的查询sql->"+queryString); Query query = getSession().createSQLQuery(queryString).addEntity(LeakageDetail.class); return query.list(); }
public List<StatisticalAnalysisVo> getStatisticalAnalysisList() { // String hql = "select workshop as name, count(id) as num from DataModel where date_format(create_at, '%Y-%m')=date_format(now(), '%Y-%m') group by workshop"; String sql = "select workshop as name, count(id) as num " + "from data_models " // + "where date_format(create_at, '%Y-%m')=date_format(now(), '%Y-%m') " // date_format函数是MySQL专用的 + "where to_char(create_at, 'yyyy-MM')=to_char(now(), 'yyyy-MM') " // PostgreSQL中的日期格式化函数是to_char + "group by workshop"; // Query query = getSession().createSQLQuery(hql); Query query = getSession().createSQLQuery(sql).addScalar("name", Hibernate.STRING).addScalar("num", Hibernate.LONG); query.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP) .setResultTransformer(Transformers.aliasToBean(StatisticalAnalysisVo.class)); return query.list(); }
* 存储过程更改
MySQL
DROP PROCEDURE IF EXISTS `calcUlclp`; DELIMITER // CREATE DEFINER=`root`@`localhost` PROCEDURE `calcUlclp`() COMMENT '计算Hipot不良率的上下限的存储过程' BEGIN SELECT (@rownum := @rownum + 1) AS `id`, DATE_FORMAT(lot_no_to_date, '%Y%m') AS year_and_month, `model_no`, group_no, SUM(liquid_injected_input_num) AS total_input, SUM(short_circuit_num) AS total_short, COUNT(DISTINCT(lot_no)) AS month_num_of_product_days ,ROUND(SUM(liquid_injected_input_num) / COUNT(DISTINCT(lot_no))) AS sample_size_n ,ROUND(SUM(short_circuit_num) / SUM(liquid_injected_input_num), 4) AS nonconforming_rate_mean_p FROM hipot, (SELECT @rownum := 0) AS r WHERE liquid_injected_input_num!=0 GROUP BY `model_no`, group_no, year_and_month ; END// DELIMITER ;
PostgreSQL
DROP FUNCTION IF EXISTS calcUlclp(); CREATE OR REPLACE FUNCTION calcUlclp() RETURNS SETOF record AS $BODY$ declare -- sql varchar; rownum int; v_rc record; BEGIN for v_rc in SELECT (rownum = rownum + 1) AS id, to_char(lot_no_to_date, 'yyyyMM') AS year_and_month, model_no, group_no, SUM(liquid_injected_input_num) AS total_input, SUM(short_circuit_num) AS total_short, COUNT(DISTINCT(lot_no)) AS month_num_of_product_days ,ROUND(SUM(liquid_injected_input_num) / COUNT(DISTINCT(lot_no))) AS sample_size_n ,ROUND(SUM(short_circuit_num) / SUM(liquid_injected_input_num), 4) AS nonconforming_rate_mean_p FROM hipot, (SELECT rownum = 0) AS r WHERE liquid_injected_input_num!=0 GROUP BY model_no, group_no, year_and_month loop return next v_rc; end loop; END; $BODY$ LANGUAGE 'plpgsql' VOLATILE; -- 调用存储过程 /* SELECT * from calcUlclp() as t(id_ boolean, year_and_month text, model_no varchar, group_no varchar, total_input bigint, total_short numeric, month_num_of_product_days bigint, sample_size_n double precision, nonconforming_rate_mean_p numeric); */