飞机上的pos和各种GPS设备用的基本上都是用经纬度保存位置信息。而我们平常计算长度和面积什么的都是米、平方米什么的。就必然涉及到坐标系的转换。众多坐标系里,我觉得utm比较适合公制单位的计算。主要是各种商业GIS软件支持的都比较好。
转换的工具和库很多,我个人比较喜欢GDAL。但如果只是转个坐标,再高一大堆DLL什么的就很麻烦。于是就开始找资料。竟然没找到现成的c#代码。。。
干脆自己根据一个网站上的js写了一个。
class Program { static void Main(string[] args) { double[] utm = LatLonToUTM(30.65156708, 103.6880587); } static double pi = Math.PI; static double sm_a = 6378137.0; static double sm_b = 6356752.314; //static double sm_EccSquared = 6.69437999013e-03; static double UTMScaleFactor = 0.9996; //得到的结果是:x坐标,y坐标,区域编号 public static double[] LatLonToUTM (double lat, double lon) { double zone = Math.Floor((lon + 180.0) / 6) + 1; double cm = UTMCentralMeridian(zone); double[] xy = new double[2]; MapLatLonToXY(lat / 180.0 * pi, lon / 180 * pi, cm, out xy); /* Adjust easting and northing for UTM system. */ xy[0] = xy[0] * UTMScaleFactor + 500000.0; xy[1] = xy[1] * UTMScaleFactor; if (xy[1] < 0.0) { xy[1] = xy[1] + 10000000.0; } return new double[] { xy[0], xy[1], zone }; } public static double UTMCentralMeridian (double zone) { double cmeridian; double deg = -183.0 + (zone * 6.0); cmeridian = deg / 180.0 * pi; return cmeridian; } internal static void MapLatLonToXY (double phi, double lambda, double lambda0, out double[] xy) { double N, nu2, ep2, t, t2, l; double l3coef, l4coef, l5coef, l6coef, l7coef, l8coef; double tmp; /* Precalculate ep2 */ ep2 = (Math.Pow(sm_a, 2.0) - Math.Pow(sm_b, 2.0)) / Math.Pow(sm_b, 2.0); /* Precalculate nu2 */ nu2 = ep2 * Math.Pow(Math.Cos(phi), 2.0); /* Precalculate N */ N = Math.Pow(sm_a, 2.0) / (sm_b * Math.Sqrt(1 + nu2)); /* Precalculate t */ t = Math.Tan (phi); t2 = t * t; tmp = (t2 * t2 * t2) - Math.Pow (t, 6.0); /* Precalculate l */ l = lambda - lambda0; /* Precalculate coefficients for l**n in the equations below so a normal human being can read the expressions for easting and northing -- l**1 and l**2 have coefficients of 1.0 */ l3coef = 1.0 - t2 + nu2; l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2); l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2; l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 - 330.0 * t2 * nu2; l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2); l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2); /* Calculate easting (x) */ xy = new double[2]; xy[0] = N * Math.Cos (phi) * l + (N / 6.0 * Math.Pow (Math.Cos (phi), 3.0) * l3coef * Math.Pow (l, 3.0)) + (N / 120.0 * Math.Pow(Math.Cos(phi), 5.0) * l5coef * Math.Pow(l, 5.0)) + (N / 5040.0 * Math.Pow(Math.Cos(phi), 7.0) * l7coef * Math.Pow(l, 7.0)); /* Calculate northing (y) */ xy[1] = ArcLengthOfMeridian (phi) + (t / 2.0 * N * Math.Pow(Math.Cos(phi), 2.0) * Math.Pow(l, 2.0)) + (t / 24.0 * N * Math.Pow(Math.Cos(phi), 4.0) * l4coef * Math.Pow(l, 4.0)) + (t / 720.0 * N * Math.Pow(Math.Cos(phi), 6.0) * l6coef * Math.Pow(l, 6.0)) + (t / 40320.0 * N * Math.Pow(Math.Cos(phi), 8.0) * l8coef * Math.Pow(l, 8.0)); return; } internal static double ArcLengthOfMeridian(double phi) { double alpha, beta, gamma, delta, epsilon, n; double result; /* Precalculate n */ n = (sm_a - sm_b) / (sm_a + sm_b); /* Precalculate alpha */ alpha = ((sm_a + sm_b) / 2.0) * (1.0 + (Math.Pow(n, 2.0) / 4.0) + (Math.Pow(n, 4.0) / 64.0)); /* Precalculate beta */ beta = (-3.0 * n / 2.0) + (9.0 * Math.Pow(n, 3.0) / 16.0) + (-3.0 * Math.Pow(n, 5.0) / 32.0); /* Precalculate gamma */ gamma = (15.0 * Math.Pow(n, 2.0) / 16.0) + (-15.0 * Math.Pow(n, 4.0) / 32.0); /* Precalculate delta */ delta = (-35.0 * Math.Pow(n, 3.0) / 48.0) + (105.0 * Math.Pow(n, 5.0) / 256.0); /* Precalculate epsilon */ epsilon = (315.0 * Math.Pow(n, 4.0) / 512.0); /* Now calculate the sum of the series and return */ result = alpha * (phi + (beta * Math.Sin (2.0 * phi)) + (gamma * Math.Sin(4.0 * phi)) + (delta * Math.Sin(6.0 * phi)) + (epsilon * Math.Sin(8.0 * phi))); return result; } }