POJ - 1523 SPF

题目要求割顶集,并且还要求出去掉割顶之后剩下的图连通数目。

tarjan算法求出割顶后直接枚举就可以了吧。

一开始想到利用iscut[u]的次数也就是点u被判定为割顶的次数求连通分量数,还有利用与结点u相连的点的bccno不同的编号来判定,都是不行的,具体原因自己想清楚比较好。

以后就不会犯这样的错误了。

代码:

#include <iostream>
#include <sstream>
#include <cstdio>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <string>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#define esp 1e-6
#define pi acos(-1.0)
#define pb push_back
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define mp(a, b) make_pair((a), (b))
#define in  freopen("in.txt", "r", stdin);
#define out freopen("out.txt", "w", stdout);
#define print(a) printf("%d\n",(a));
#define bug puts("********))))))");
#define stop  system("pause");
#define Rep(i, c) for(__typeof(c.end()) i = c.begin(); i != c.end(); i++)
#define inf 0x0f0f0f0f

using namespace std;
typedef long long  LL;
typedef vector<int> VI;
typedef pair<int, int> pii;
typedef vector<pii,int> VII;
typedef vector<int>:: iterator IT;

const int maxn = 2000;
int pre[maxn], iscut[maxn], vis[maxn], low[maxn], bccno[maxn], dfs_clock, bcc_cnt;
VI g[maxn], bcc[maxn];
int flag;
struct edge
{
    int u, v;
    edge(int u, int v):u(u), v(v) {}
};
stack<edge> S;
int dfs(int u, int fa)
{
    int lowu = pre[u] = ++dfs_clock;
    int child = 0;
    for(int i = 0; i < g[u].size(); i++)
    {
        int v = g[u][i];
        edge e = edge(u, v);
        if(!pre[v])
        {
            S.push(e);
            child++;
            int lowv = dfs(v, u);
            lowu = min(lowu, lowv);
            if(lowv >= pre[u])
            {
                bcc_cnt++;
                bcc[bcc_cnt].clear();
                iscut[u] = 1;
                for(;;)
                {
                    edge x = S.top();
                    S.pop();
                    if(bccno[x.u] != bcc_cnt)
                    {
                        bccno[x.u] = bcc_cnt;
                        bcc[bcc_cnt].pb(x.u);
                    }
                    if(bccno[x.v] != bcc_cnt)
                    {
                        bccno[x.v] = bcc_cnt;
                        bcc[bcc_cnt].pb(x.v);
                    }
                    if(x.u == u && x.v == v) break;
                }
            }
        }
        else if(pre[v] < pre[u] && v != fa)
        {
            S.push(e);
            lowu = min(lowu, pre[v]);
        }
    }
    if(child == 1 && fa < 0)
    {
        iscut[u] = 0;
    }
    return low[u] = lowu;
}

void find_bcc(int n)
{
    memset(pre, 0, sizeof(pre));
    memset(iscut, 0, sizeof(iscut));
    memset(bccno, 0, sizeof(bccno));

    dfs_clock = bcc_cnt = 0;
    for(int i = 1; i <= n; i++)
        if(!pre[i])
            dfs(i, -1);
}
void dfs1(int u)
{
    vis[u] = 1;
    for(int i = 0; i < g[u].size(); i++)
    {
        int v = g[u][i];
        if(!vis[v])
        {
            dfs1(v);
        }
    }
}
void init(void)
{
    for(int i = 0; i < maxn; i++)
        g[i].clear();
}
int main(void)
{
    int n;
    int u, v;
    int t = 0;
    while(scanf("%d", &u), u)
    {
        init();
        flag = 0;
        n = 0;
        scanf("%d", &v);
        g[u].pb(v);
        g[v].pb(u);
        n = max(max(u, v), n);
        while(scanf("%d", &u), u)
        {
            scanf("%d", &v);
            g[u].pb(v);
            g[v].pb(u);
            n = max(max(u, v), n);
        }
        find_bcc(n);
        if(t) puts("");
        t++;
        printf("Network #%d\n", t);
        for(int u = 1; u <= 1000; u++)
            if(iscut[u])
            {
                flag = 1;
                memset(vis, 0, sizeof(vis));
                int cnt = 0;
                vis[u] = 1;
                for(int i = 0; i < g[u].size(); i++)
                {
                    int  v = g[u][i];
                    if(!vis[v])
                        cnt++, dfs1(v);
                }
                printf("  SPF node %d leaves %d subnets\n", u, cnt);
            }
        if(!flag)
        {
            puts("  No SPF nodes");
        }
    }
    return 0;
}

你可能感兴趣的:(poj)