HDU-1028 Ignatius and the Princess III

       整数拆分题目:

    http://acm.hdu.edu.cn/showproblem.php?pid=1028

           Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 10429    Accepted Submission(s): 7398

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:   N=a[1]+a[2]+a[3]+...+a[m];   a[i]>0,1<=m<=N; My question is how many different equations you can find for a given N. For example, assume N is 4, we can find:   4 = 4;   4 = 3 + 1;   4 = 2 + 2;   4 = 2 + 1 + 1;   4 = 1 + 1 + 1 + 1; so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
  整数划分的递归算法:
int split(int n, int m)
{
 if(n < 1 || m < 1)
  return 0;
 if(n == 1 || m == 1)
  return 1;
 if(n < m) 
  return split(n, n);
 if(n == m) 
  return (split(n, m - 1) + 1);
 if(n > m)
  return (split(n, m - 1) + split((n - m), m));
}

递归算法易于理解。但是由于多次重复计算,会很浪费时间。所以需要转化成非递归的算法。如下:

 

首先,我们引进一个小小概念来方便描述吧,record[n][m]是把自然数划划分成所有元素不大于m的分法,例如:

当n=4,m=1时,要求所有的元素都比m小,所以划分法只有1种:{1,1,1,1};

当n=4,m=2时,。。。。。。。。。。。。。。。。只有3种{1,1,1,1},{2,1,1},{2,2};

当n=4,m=3时,。。。。。。。。。。。。。。。。只有4种{1,1,1,1},{2,1,1},{2,2},{3,1};

当n=4,m=5时,。。。。。。。。。。。。。。。。只有5种{1,1,1,1},{2,1,1},{2,2},{3,1},{4};

从上面我们可以发现:当n==1||m==1时,只有一种分法;

当n<m时,由于分法不可能出现负数,所以record[n][m]=record[n][n];

当n==m时,那么就得分析是否要分出m这一个数,如果要分那就只有一种{m},要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=1+record[n][n-1];

当n>m时,那么就得分析是否要分出m这一个数,如果要分那就{{m},{x1,x2,x3..}}时n-m的分法record[n-m][m],要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=record[n-m][m]+record[n][m-1];

#include<stdio.h>
int dp[150][150]={0}; 
int main()
{
    int i,j;
    for(i=1;i<=121;i++)
       dp[1][i]=dp[i][1]=1;
    for(i=2;i<121;i++)
    {
        for(j=2;j<=121;j++)
        {
            if(i<j) 
          dp[i][j]=dp[i][i];
            else if(i==j)
           dp[i][j]=1+dp[i][j-1];
            else if(i>j) 
        dp[i][j]=dp[i-j][j]+dp[i][j-1];
     }
    }
           int n;
    while(~scanf("%d",&n))
          printf("%d\n",dp[n][n]);
    return 0;
}

利用母函数,但是,比较费时。

 

#include <stdio.h>
const int lmax=10000;    
int c1[lmax+1],c2[lmax+1];
int main()
{
 int n,i,j,k;
 while (~scanf("%d",&n))
 {
  for (i=0;i<=n;i++)
   {
   c1[i]=0;
   c2[i]=0;
  }
   for(i=0;i<=n;i++) 
    c1[i]=1;
   for(i=2;i<=n;i++)
   { 
    for(j=0;j<=n;j++)
     for(k=0;k+j<=n;k+=i)
     {
      c2[j+k]+=c1[j];  
     }
     for (j=0;j<=n;j++)
     {  
      c1[j]=c2[j];
      c2[j]=0; 
     }
   }
   printf("%d\n",c1[n]);
 }
 return 0;
}

 

 

 

 

你可能感兴趣的:(HDU)