- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 通信行业语言大模型技术和应用研究
人工智能-猫猫
学习AIGC语言模型人工智能
摘要ChatGPT的出现迅速引爆了AI的又一波热潮。在通信行业中,网络规划、建设、维护、优化、运营是非常耗时、复杂且需要大量人力成本的工作。语言大模型在通信运营商中有着非常广阔的应用前景。阐述了语言大模型开发的基本技术方案及原理并对其在通信行业的应用进行了研究与展望。前言ChatGPT的出现迅速引爆了AI的又一波热潮。作为一种人工智能技术驱动的语言大模型,ChatGPT使用了Transformer
- [Base]DIFFERENTIAL TRANSFORMER
Xy-unu
transformer深度学习人工智能
1.BaseInfoTitleDIFFERENTIALTRANSFORMERAdresshttps://arxiv.org/pdf/2410.05258Journal/Time202410Author微软研究院和清华大学提出Codehttps://aka.ms/Diff-TransformerRead2411112.CreativeQ&A减少对无关上下文的关注;通过计算两个Softmax注意力权重
- 差分注意力,负注意力的引入
syugyou
pytorchpython
文章目录DifferentialTransformer差分注意力,负注意力的引入相关链接介绍初始化函数多头差分注意力DifferentialTransformer差分注意力,负注意力的引入相关链接ai-algorithms/README.mdatmain·Jaykef/ai-algorithms(github.com)unilm/Diff-Transformeratmaster·microsoft
- Transformer大模型实战 对比ALBERT与BERT
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题在当今人工智能领域的迅速发展中,Transformer大模型无疑成为了自然语言处理(NLP)领域的璀璨明星。为了深入理解这一技术,我们特别撰写了《Transformer大模型实战对比ALBERT与BERT》这篇文章,旨在为广大读者提供一场关于Transformer模型及其实战应用的技术盛宴。关键词:Transformer,BERT,ALBERT,自然语言处理,深度学习,模型对比,实战应用摘
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- 差分革命:清华微软携手,用物理智慧重塑Transformer“慧眼”
YINWA AI
人工智能科技AI人工智能科技ai
当物理学遇上AI,一场精准捕捉的变革悄然上演想象一下,在信息的汪洋大海中,寻找一根至关重要的“针”,难度无异于“大海捞针”。然而,随着诺贝尔物理学奖的光芒照耀到“机器学习之父”GeoffreyHinton的肩头,另一场跨界融合也在悄然进行——微软与清华大学的科研团队携手,将物理学的智慧融入AI,推出DifferentialTransformer(DIFFTransformer),让Transfor
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- 普通人怎么利用GPT赚钱之创建自动化工具
贫苦游商
普通人利用AI搞钱系列gpt自动化运维人工智能算法机器学习
利用GPT创建自动化工具:从构想到实现的详细指南在当前快速发展的科技时代,人工智能(AI)正在改变各行各业的工作方式。对于普通人来说,利用GPT(GenerativePre-trainedTransformer)这样的语言模型来创建自动化工具,并通过这些工具赚钱,已经成为一种切实可行的方法。本文将探讨普通人如何在中文平台上利用GPT创建自动化工具,从而实现盈利。什么是GPT?首先,我们需要了解什么
- 整理:4篇论文介绍实时语义分割的未来,Transformer架构下的性能与效率平衡
mslion
transformer深度学习人工智能语义分割
在Transformer架构推动下,计算机视觉领域致力于打造一个极为强大且通用的大规模模型,它能处理物体检测、图像分割等多种任务。不少基于Transformer架构的研究成果显著,其通用模型在特定应用中表现出色,在图像和视频分割方面,通用设计的研究成果也超越了以往定制模型。其中,分割一切模型(SAM)在交互式分割中表现突出,能统一应对点、边界框、掩码和文本输入等交互方式。然而,多数此类研究存在弊端
- 一文了解汽车图像传感器
沧海一升
CMOS图像传感器成像汽车CIS芯片HDR自动驾驶
2024年底,安森美做了题为"HowAutomotiveImageSensorsTransformtheFutureofAutonomousDriving"的演讲,这里结合其内容对自动驾驶图像传感器做一个介绍。当前的自动驾驶感知技术主要有两大技术路线:一种是仅使用摄像头作为传感器进行信息采集的纯视觉路线,一种是同时使用“摄像头+雷达”的多传感器融合路线。这两种方案的共同之处在于都需要摄像头作为基础
- 如何将装有tensor的多维list转化为torch.Tensor类型
XAL1
笔记pytorch深度学习python
普通list转tensor:a=[[jforjinrange(5)]foriinrange(3)]A=torch.Tensor(a)print('list=',a)print('typeofa:',type(a))print('typeoftransform:',type(A))结果:可以看到对于不包含tensor的普通list,直接用torch.Tensor就可以进行转换。但是对于包含了tens
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- Adobe Firefly 技术浅析(二):Transformer生成模型
爱研究的小牛
AIGC——图像transformer深度学习人工智能AIGC机器学习
AdobeFirefly的图像生成技术不仅依赖于生成式对抗网络(GAN),还引入了基于Transformer的生成模型。Transformer模型在处理长距离依赖关系和生成复杂图像结构方面具有显著优势。1.基本原理1.1Transformer模型简介Transformer模型最初由Vaswani等人在2017年提出,用于自然语言处理(NLP)任务。其核心是自注意力机制(Self-Attention
- 基于hf的trl框架的deepseek-r1-zero实现与训练
喂喂喂喂位
deepseekpythonAIGC
导入模块和promt格式"""Reference:"""importreimporttorchfromdatasetsimportload_dataset,DatasetfromtransformersimportAutoTokenizer,AutoModelForCausalLMfromtrlimportGRPOConfig,GRPOTrainer#LoadandprepdatasetSYSTE
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- Transformer 的原理是什么?
玩人工智能的辣条哥
人工智能transformer深度学习人工智能
环境:Transformer问题描述:Transformer的原理是什么?通俗易懂一点。解决方案:Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,最初由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它在自然语言处理(NLP)领域取得了巨大成功,并逐渐扩展到计算机视觉(CV)和其他领域。Transforme
- flink(十一):Table&Sql实现窗口水印计算
羽落风起
大数据flinkflink
文章目录分享说明实现讲解代码总结分享大数据博客列表说明本博客每周五更新一次。本文属于实战,讲解Flink1.12版本java代码使用时间窗口加水印实现,具体需求为5秒内用户订单总数、订单最大金额、最小金额实现讲解代码结构分为5部分,准备环境env数据输入source模拟数据生成数据处理transformation创建水印、窗口执行任务基于sql和table风格实现对应功能数据输出sink启动任务e
- 扩散 Transformer 策略:用于通才视觉-语言-动作学习的规模化扩散 Transformer
三谷秋水
计算机视觉大模型智能体transformer深度学习计算机视觉语言模型人工智能机器学习
25年2月来自上海AI实验室、浙大、香港中文大学、北大、商汤科技、清华和中科院香港科学创新研究院的论文“DiffusionTransformerPolicy:ScalingDiffusionTransformerforGeneralistVision-Language-ActionLearning”。最近,在多样化的机器人数据集上进行预训练的大型视觉-语言-动作模型,已展示出利用少量域内数据泛化到
- LLM大模型技术实战4:热门开源LLMs对比和选型
大模型学习教程
机器学习开源人工智能职场和发展
一、大语言模型的特点和能力LLM(LargeLanguageModel,大型语言模型)是指那些规模庞大、参数数量众多的深度神经网络模型,用于理解和生成自然语言文本。在自然语言处理(NLP)领域有着广泛的应用,因其强大的语言理解和生成能力,能够处理各种复杂的文本任务。1.1主要特点架构特点LLM主要基于Transformer架构,Transformer通过自注意力机制(Self-Attention)
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- 【每日论文】Forgetting Transformer: Softmax Attention with a Forget Gate
WHATEVER_LEO
每日论文transformer深度学习人工智能自然语言处理计算机视觉语言模型
下载PDF或查看论文,请点击:LlamaFactory-huggingfacedailypaper-每日论文解读|LlamaFactory|LlamaFactory摘要现代循环序列模型的一个关键组件是遗忘门。虽然Transformer没有显式的循环形式,但我们展示了一种通过以数据依赖的方式降低未归一化注意力分数的自然方法,将遗忘门融入Transformer。我们称这种注意力机制为“遗忘注意力”,并
- 使用OpenAI API实现自然语言处理应用
shuoac
自然语言处理人工智能python
使用OpenAIAPI实现自然语言处理应用技术背景介绍随着人工智能技术的不断发展,自然语言处理(NLP)在各种应用中的地位越来越重要。从自动文本生成、聊天机器人到智能搜索引擎,NLP技术的应用场景非常广泛。而OpenAI提供的API使得开发者可以轻松地将先进的NLP模型集成到他们的应用中。核心原理解析OpenAI的API基于强大的GPT(GenerativePre-trainedTransform
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 第6篇:Transformer架构详解(下):多头注意力机制与位置编码
Gemini技术窝
transformer深度学习人工智能自然语言处理机器学习chatgptnlp
Transformer模型自提出以来,已经在自然语言处理(NLP)领域取得了巨大的成功。其核心创新包括多头注意力机制和位置编码,这些技术使得Transformer能够高效处理长序列数据。本文将详细介绍多头注意力机制和位置编码的原理、作用及其实现,并通过Python代码示例和应用场景讲解,帮助零基础读者全面理解这些关键技术。我们还将使用幽默的比喻,使这些复杂的概念更加易懂。文章目录多头注意力机制基本
- 关于FBX模型导入Unity后,在Play场景里想要选中但报错:“NullReferenceException: Object reference not set to an insta”的解决办法。
宝宝嘟嘟打雷辣
unity游戏引擎
FBX导入Unity后,本想要测试通过做一个BIM模型数字孪生场景,实现Play场景下,选择构件能展示构件属性信息。代码如下:usingSystem.Collections;usingSystem.Collections.Generic;usingUnityEngine;publicclassDemo1:MonoBehaviour{publicfloatsmooth=3f;Transformcur
- UVa12303 Composite Transformations
惆怅客123
UVa部分题目解题报告计算几何icpcUVa仿射变换矩阵平面的一般式平面的三点式
UVa12303CompositeTransformations题目链接题意输入格式输出格式分析AC代码题目链接 UVa12303CompositeTransformations题意 空间中有n个点和m个平面,你的任务是按顺序向它们施加t个变换,输出每个点的最终位置和每个平面的最终方程。一共有3种变换,如表下表所示。变换说明TRANSLATEabc点(x,y,z)变成(x+a,y+b,z+c)
- 仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播
KangkangLoveNLP
手撕系列#transformerpytorchtransformer人工智能深度学习python机器学习
仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播仅仅使用pytorch来手撕transformer架构(1):位置编码的类的实现和向前传播最适合小白入门的Transformer介绍仅仅使用pytorch来手撕transformer架构(2):多头注意力MultiHeadAttention类的实现和向前传播仅仅使用pytorch来手撕transfor
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?