MapReduce读取HDFS,将结果写入MongoDB

参考:http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-hadoop/

附件是我编译和下载好的jar包(hadoop版本:hadoop-0.20.2-cdh3u3),需要的可下载直接使用。

 

首先,编译MongoDB Adapter

1.下载源码:

https://github.com/mongodb/mongo-hadoop

 

2.修改build.sbt

hadoopRelease in ThisBuild := "cdh3"

 

3.编译:

./sbt package

 

4.编译好后

在target目录生成mongo-hadoop_cdh3u3-1.1.0-SNAPSHOT.jar

在core/target目录生成mongo-hadoop-core_cdh3u3-1.1.0-SNAPSHOT.jar

 

5.下载mongo-2.7.3.jar:

wget --no-check-certificate https://github.com/downloads/mongodb/mongo-java-driver/mongo-2.7.3.jar

 

6. 将这两个jar包拷贝至hadoop集群每个节点的$HADOOP_HOME/lib目录

cp mongo-2.7.3.jar $HADOOP_HOME/lib/

cp core/target/mongo-hadoop-core_cdh3u3-1.1.0-SNAPSHOT.jar $HADOOP_HOME/lib/

 

7.准备input文件:hadoop fs -put input.txt /tmp/input/

vi input.txt

Hello,MongoDB!
MongoDB
Hello
Hello,Hadoop
Hadoop with MongoDB

 

8.wordcount程序:(我是在windows上通过eclipse连接hadoop的)

 

import java.io.*;
import java.util.*;

import org.apache.commons.logging.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.bson.*;

import com.mongodb.hadoop.*;
import com.mongodb.hadoop.util.*;

public class WordCount {

	public static class TokenizerMapper extends
			Mapper<Object, Text, Text, IntWritable> {

		private final static IntWritable one = new IntWritable(1);
		private Text word = new Text();

		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			StringTokenizer itr = new StringTokenizer(value.toString());
			while (itr.hasMoreTokens()) {
				word.set(itr.nextToken());
				context.write(word, one);
			}
		}
	}

	public static class IntSumReducer extends
			Reducer<Text, IntWritable, Text, IntWritable> {

		private final IntWritable result = new IntWritable();

		public void reduce(Text key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {

			int sum = 0;
			for (final IntWritable val : values) {
				sum += val.get();
			}
			result.set(sum);
			context.write(key, result);
		}
	}

	public static void main(String[] args) throws Exception {

		final Configuration conf = new Configuration();
		conf.addResource(new Path("F:/lxw-hadoop/hdfs-site.xml"));
		conf.addResource(new Path("F:/lxw-hadoop/mapred-site.xml"));
		conf.addResource(new Path("F:/lxw-hadoop/core-site.xml"));
		conf.set("mapred.job.tracker", "10.133.103.21:50021");
		MongoConfigUtil.setOutputURI(conf, "mongodb://10.133.103.23/test.out");
		System.out.println("Conf: " + conf);

		final Job job = new Job(conf, "word count");

		job.setJarByClass(WordCount.class);

		job.setMapperClass(TokenizerMapper.class);

		job.setReducerClass(IntSumReducer.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);

		job.setOutputFormatClass(MongoOutputFormat.class);

		FileInputFormat.addInputPath(job, new Path("/tmp/input/"));
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}

 

9.运行结果:


MapReduce读取HDFS,将结果写入MongoDB_第1张图片
 

10. 在MongoDB中查看结果:

 

> use test
switched to db test
> show collections
blog
out
system.indexes
> db.out.find()
{ "_id" : "Hadoop", "value" : 2 }
{ "_id" : "Hello", "value" : 4 }
{ "_id" : "MongoDB", "value" : 2 }
{ "_id" : "MongoDB!", "value" : 1 }
{ "_id" : "with", "value" : 1 }
{ "_id" : "world!", "value" : 1 }

 

你可能感兴趣的:(mongodb,hadoop)