参考
http://www.cnblogs.com/shanyou/archive/2010/02/25/1673781.html
http://www.hellodba.net/2010/02/cassandra.html
提起NoSQL这个话题,仿佛不应该是DBA要关注的事,而是架构师应该关心的。但是作为一名DBA,在使用传统的关系型思想建模时,应该有必要了解NoSQL的建模方法。
各种NoSQL数据库有很多,我最关注的还是BigTable类型,因为它是一个高可用可扩展的分布式计算平台,用来处理海量的结构化数据,而数据库同样也是处理结构化数据,所以除了没有SQL,在数据模型方面有相似之处。Cassandra是facebook开源出来的一个版本,可以认为是BigTable的一个开源版本,目前twitter和digg.com在使用。我们尝试从DBA的角度出发去理解Cassandra的数据模型。
NoSQL并不能简单的理解为No SQL,其本质应该是No Relational,也就是说它不是基于关系型的理论基础,而我们所有传统的数据库都是基于这套理论而发展起来的,所以SQL并不是问题的关键所在,比如有些NoSQL数据库可以提供SQL类型的接口,允许你通过类SQL的语法去访问数据。而Friendfeed则是反其道而行之,利用关系型数据库MySQL,采用了去关系化的设计方法,去实现自己的KeyValue存储。所以NoSQL的本质是No Relational.
Cassandra特点:
1.灵活的schema,不需要象数据库一样预先设计schema,增加或者删除字段非常方便(on the fly)。
2.支持range查询:可以对Key进行范围查询。
3.高可用,可扩展:单点故障不影响集群服务,可线性扩展。
Keyspace
Cassandra中的最大组织单元,里面包含了一系列Column family,Keyspace一般是应用程序的名称。你可以把它理解为Oracle里面的一个schema,包含了一系列的对象。
Column family(CF)
CF是某个特定Key的数据集合,每个CF物理上被存放在单独的文件中。从概念上看,CF有点象数据库中的Table.
Key
数据必须通过Key来访问,Cassandra允许范围查询,例如:start => '10050', :finish => '10070'
Column
在Cassandra中字段是最小的数据单元,column和value构成一个对,比如:name:“jacky”,column是name,value是jacky,每个column:value后都有一个时间戳:timestamp。
和数据库不同的是,Cassandra的一行中可以有任意多个column,而且每行的column可以是不同的。从数据库设计的角度,你可以理解为表上有两个字段,第一个是Key,第二个是长文本类型,用来存放很多的column。这也是为什么说Cassandra具备非常灵活schema的原因。
Super column
Super column是一种特殊的column,里面可以存放任意多个普通的column。而且一个CF中同样可以有任意多个Super column,一个CF只能定义使用Column或者Super column,不能混用。下面是Super column的一个例子,homeAddress这个Super column有三个字段:分别是street,city和zip:
homeAddress: {street: "binjiang road",city: "hangzhou",zip: "310052",}
Sorting
不同于数据库可以通过Order by定义排序规则,Cassandra取出的数据顺序是总是一定的,数据保存时已经按照定义的规则存放,所以取出来的顺序已经确定了,这是一个巨大的性能优势。有意思的是,Cassandra按照column name而不是column value来进行排序,它定义了以下几种选项:BytesType, UTF8Type, LexicalUUIDType, TimeUUIDType, AsciiType, 和LongType,用来定义如何按照column name来排序。实际上,就是把column name识别成为不同的类型,以此来达到灵活排序的目的。UTF8Type是把column name转换为UTF8编码来进行排序,LongType转换成为64位long型,TimeUUIDType是按照基于时间的UUID来排序。例如:
Column name按照LongType排序:
{name: 3, value: "jacky"}, {name: 123, value: "hellodba"}, {name: 976, value: "Cassandra"}, {name: 832416, value: "bigtable"}
Column name按照UTF8Type排序:
{name: 123, value: "hellodba"}, {name: 3, value: "jacky"}, {name: 832416, value: "bigtable"} {name: 976, value: "Cassandra"}
下面我们看twitter的Schema:
<Keyspace Name="Twitter"> <ColumnFamily CompareWith="UTF8Type" Name="Statuses" /> <ColumnFamily CompareWith="UTF8Type" Name="StatusAudits" /> <ColumnFamily CompareWith="UTF8Type" Name="StatusRelationships" CompareSubcolumnsWith="TimeUUIDType" ColumnType="Super" /> <ColumnFamily CompareWith="UTF8Type" Name="Users" /> <ColumnFamily CompareWith="UTF8Type" Name="UserRelationships" CompareSubcolumnsWith="TimeUUIDType" ColumnType="Super" /> </Keyspace>
我们看到一个叫Twitter的keyspace,包含若干个CF,其中StatusRelationships和UserRelationships被定义为包含Super column的CF,CompareWith定义了column的排序规则,CompareSubcolumnsWith定义了subcolumn的排序规则,这里使用了两种:TimeUUIDType和UTF8Type。我们没有看到任何有关column的定义,这意味着column是可以灵活变更的。
为了方便大家理解,我会尝试着用关系型数据库的建模方法去描述Twitter的Schema,但千万不要误认为这就是Cassandra的数据模型,对于Cassandra来说,每一行的colunn都可以是任意的,而不是象数据库一样需要在建表时就创建好。
Users CF记录用户的信息,Statuses CF记录tweets的内容,StatusRelationships CF记录用户看到的tweets,UserRelationships CF记录用户看到的followers。我们注意到排序方式是TimeUUIDType,这个类型是按照时间进行排序的UUID字段,column name是用UUID函数产生(这个函数返回了一个UUID,这个UUID反映了当前的时间,可以根据这个UUID来排序,有点类似于timestamp一样),所以得到结果是按照时间来排序的。使用过twitter的人都知道,你总是可以看到自己最新的tweets或者最新的friends.
存储
Cassandra是基于列存储的(Bigtable也是一样),这个和基于列的数据库是一个道理。
API
下面是数据库,Bigtable和Cassandra API的对比:
Relational SELECT `column` FROM `database`.`table` WHERE `id` = key; BigTable table.get(key, "column_family:column") Cassandra: standard model keyspace.get("column_family", key, "column") Cassandra: super column model keyspace.get("column_family", key, "super_column", "column")
我对Cassandra数据模型的理解:
1.column name存放真正的值,而value是空。因为Cassandra是按照column name排序,而且是按列存储的,所以往往利用column name存放真正的值,而value部分则是空。例如:“jacky”:“null”,“fenng”:”null”
2.Super column可以看作是一个索引,有点象关系型数据库中的外键,利用super column可以实现快速定位,因为它可以返回一堆column,而且是排好序的。
3.排序在定义时就确定了,取出的数据肯定是按照确定的顺序排列的,这是一个巨大的性能优势。
4. 非常灵活的schema,column可以灵活定义。实际上,colume name在很多情况下,就是value(是不是有点绕)。
5.每个column后面的timestamp,我并没有找到明确的说明,我猜测可能是数据多版本,或者是底层清理数据时需要的信息。
最后说说架构,我认为架构的核心就是有所取舍,不管是CAP还是BASE,讲的都是这个原则。架构之美在于没有任何一种架构可以完美的解决各种问题,数据库和NoSQL都有其应用场景,我们要做的就是为自己找到合适的架构。
–EOF–
这篇文章,我参考了up and running with cassandra,除此以外,我还参考了twitter提供的API,它帮助我理解twitter的schema设计。这篇文章,肯定有很多理解不正确的地方,希望朋友们指正。