缓存服务器是互联网后端服务中常用的基础设施。
场景(一)图片服务器上存储了大量图片,为了提高图片服务的吞吐量,希望把热门的图片加载到内存中。
场景(二)分布式存储服务,为提高访问吞吐,把大量的meta信息存储在内存中。
但是使用Java语言开发缓存服务,不可避免的遇到GC问题。无论使用ehcache是基于Map实现的缓存,都会产生大量Minor GC无法回收的对象,最终导致CMS或Full GC,对系统吞吐造成影响。通过观察这类服务产生的GC日志,可以观察到频繁的CMS。这里简单介绍下CMS的过程即对系统的影响,CMS两阶段标记,减少stop the world的时间,如图红色部分为STW(stop the world)。
CMS日志如下:
9.780: [GC [1 CMS-initial-mark: 507883K(507904K)] 521962K(521984K), 0.0029230 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]
Total time for which application threads were stopped: 0.0029970 seconds
CMS第一次标记,stop the world。以下各个步骤则不影响Java Threads工作,即并发模式。
9.783: [CMS-concurrent-mark-start]
9.913: [CMS-concurrent-mark: 0.130/0.130 secs] [Times: user=0.26 sys=0.00, real=0.13 secs]
9.913: [CMS-concurrent-preclean-start]
9.914: [CMS-concurrent-preclean: 0.001/0.001 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
9.914: [CMS-concurrent-abortable-preclean-start]
9.914: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Application time: 0.1317920 seconds
9.914: [GC[YG occupancy: 14079 K (14080 K)]9.914: [Rescan (parallel) , 0.0023580 secs]9.917: [weak refs processing, 0.0000060 secs]
[1 CMS-remark: 507883K(507904K)] 521962K(521984K), 0.0024100 secs] [Times: user=0.01 sys=0.00, real=0.00 secs]
Total time for which application threads were stopped: 0.0025420 seconds
Rescan为第二次标记,STW。
构造和Memcached slab/chunk类似的Java内存管理方式。为缓存的对象分配一组chunck,相同Size的Chunk合成一组Slab。初始slab设为100B,如果缓存对象小于100B,放入100B slab,如果大于100B,小于 100B * Growth Factor = 1.27 = 127B,则放入127B slab。因此需要一个快速排序的数据结构来实现slab。我用ConcurrentSkipListMap实现slab,查找插入时间复杂度和二叉树一致,但实现更简单。代码如下,
public boolean put(K key, byte[] value) { Map.Entry<Float, LocalMCSlab> entry = null; Float theSize = Float.valueOf(value.length); Stat.set("CacheSize=", ((getCurrentTotalCacheSize() / 1024f)) + "KB"); // 以cache size为key,以chunks map为value,如果比这个cache size大得slab不存在,则创建一个 // 否则,在大约cache size的slab中找一个最小的slab if((entry = slabs.tailMap(theSize).firstEntry()) == null) { Float floorKey = slabs.floorKey(theSize); float needSize = floorKey == null ? theSize : floorKey * scale; while(needSize < theSize) { needSize = needSize * scale; } LocalMCSlab<K, byte[]> slab = new LocalMCSlab<K, byte[]>((int) needSize); slab.put(key, value, false); slabs.put(needSize, slab); return true; } else { // 当当前全部cache size + 这个缓存的size > 分配给整个cache的initSize时,则需使用LRU策略 boolean isLRU = getCurrentTotalCacheSize() + theSize > initSize; entry.getValue().put(key, value, isLRU); return true; } }
每一个slab基于一个Map<K, V>实现。同时为实现LRU,实现了一个链表从头插入从尾部取出,这样链表尾部对象为last recent used,代码如下,
private static class LinkedListNode { public LinkedListNode previous; public LinkedListNode next; public Object object; /** * Constructs a new linked list node. * @param object the Object that the node represents. * @param next a reference to the next LinkedListNode in the list. * @param previous a reference to the previous LinkedListNode in the list. */ public LinkedListNode(Object object, LinkedListNode next, LinkedListNode previous) { this.object = object; this.next = next; this.previous = previous; } ... } public static class LinkedList { /** * The root of the list keeps a reference to both the first and last * elements of the list. */ private LinkedListNode head = new LinkedListNode("head", null, null); /** * Creates a new linked list. */ public LinkedList() { head.next = head.previous = head; } /** * Returns the first linked list node in the list. * * @return the first element of the list. */ public LinkedListNode getFirst() { LinkedListNode node = head.next; if (node == head) { return null; } return node; } /** * Returns the last linked list node in the list. * * @return the last element of the list. */ public LinkedListNode getLast() { LinkedListNode node = head.previous; if (node == head) { return null; } return node; } public LinkedListNode removeLast() { LinkedListNode node = head.previous; if (node == head) { return null; } head.previous = node.previous; return node; } /** * Adds a node to the beginning of the list. * * @param node the node to add to the beginning of the list. */ public LinkedListNode addFirst(LinkedListNode node) { node.next = head.next; head.next = node; node.previous = head; node.next.previous = node; return node; } ... }
当LRU策略发生时,不再创建新的byte[],而是重写最老的一个byte[],并把这个cache移动到链表头部
if(removeLRU) { LinkedListNode lastNode = ageList.removeLast(); Object lasthashKey = hashKeyMap.remove(lastNode.object); if(lasthashKey == null) { return false; } Stat.inc("eviction[" + this.chunkSize + "]"); CacheObject<byte[]> data = map.get(lasthashKey); System.arraycopy(value, 0, data.object, 0, value.length); data.length = value.length; // update key / hashkey mapping hashKeyMap.put(key, lasthashKey); lastNode.object = key; ageList.addFirst(lastNode); }
注意使用了一个hashKeyMap,它的key是这次put的cache对象的key,value作为byte[]的key,在第一次创建byte[]时创建。这样做也是为了不重新创建对象。
全部代码及测试类见附件。
测试参数
java -Xms2g -Xmx2g -Xmn128m -XX:+UseConcMarkSweepGC -server -XX:SurvivorRatio=5 -XX:CMSInitiatingOccupancyFraction=80 -XX:+PrintTenuringDistribution -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -Xloggc:./gc.log test.TestMain
测试表现稳定,内存全部在Minor GC阶段回收。
分配cache=1G,实际CacheSize==1048625.2KB;
各个slab chunk个数:
Chunk[100.0] count==5
Chunk[209758.16] count==1231
Chunk[165163.9] count==4938
本来想写一个伪代码的,后来觉得Java中还是有不少比较好的数据结构,比如ConcurrentSkipListMap和LRUMap还是想介绍给大家。因此就写了这个比较粗糙的版本,基本可以反映出类似Memcached slab/chunk管理内存的方式。实际测试中表现也有一定收益。可以基于这个版本开发线上服务。但是这个实现里面还没有很好的处理并发问题,对内存的使用也有一些坑。使用中如果遇到问题,欢迎大家一起讨论。