- 顶级Web应用程序测试工具列表
旧游无处不堪寻
测试工具测试用例selenium网络协议功能测试jmeterpostman
今天主要列举Web应用程序的工具。今天的列表仅仅提供索引功能,具体要使用的同学,可以自行搜索哦。通过web应用程序测试,在web应用程序公开发布之前,会发现网站功能、安全性、可访问性、可用性、兼容性和性能等问题。Web应用程序测试工具:WebLOADDigivanteAcunetixInvicti(formerlyNetsparker)TestCompleteAvoAssureAstraWeb功能
- Spark2 之 Expression/Functions
zhixingheyi_tian
sparkspark
ExpressionConvertersrc/main/scala/org/apache/gluten/expression/ExpressionConverter.scalaTopNTransformersrc/main/scala/org/apache/gluten/execution/TopNTransformer.scala
- Spark2 之 FallBack
zhixingheyi_tian
sparkspark
newValidatorsrc/main/scala/org/apache/gluten/extension/columnar/validator/Validators.scala/***Avalidatorthatdoesn'tinvolvenativevalidation.**ThisistypicallyRASplannerthatdoesnativevalidationinlinewith
- 【自学笔记】Spark基础知识点总览-持续更新
Long_poem
笔记spark大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录ApacheSpark基础知识点总览目录简介核心组件SparkSQLDataFrame与DatasetAPIRDD(弹性分布式数据集)SparkStreamingMLlib(机器学习库)GraphX(图处理框架)部署模式示例代码创建SparkContext创建RDD并执行操作使用DataFrameAPI使用SparkSQL总结
- Spark 从HDFS读取时,通常按文件块(block)数量决定初始partition数,这是怎么实现的?
闯闯桑
sparkhdfs大数据
在Spark中,从HDFS读取数据时按文件块(block)数量决定初始partition数,这一机制是通过HadoopInputFormat的分片(split)策略实现的。具体流程如下:1.HDFS文件块(Block)与SparkPartition的对应关系HDFS默认块大小(如128MB/256MB)决定了文件的物理存储分布。Spark在读取HDFS文件时,会调用Hadoop的InputForm
- 【ESP32】【LLM API】Accessing the Xunfei Spark LLM API with ESP32
hmywillstronger
spark大数据分布式
AccessingtheXunfeiSparkLLMAPIwithESP32Real-timeconversationwithXunfeiSparklargelanguagemodelviaESP32microcontrollerIntroductionWiththerapiddevelopmentofartificialintelligencetechnology,largelanguagemo
- Buffer overFolw---Kryo序列化出现缓冲区溢出的问题解决
Matrix70
#spark大数据分布式
问题:由于我的数据量太大,我设置批次为10000万,50w数据大概有400M左右,然后进行spark数据处理时候报错为org.apache.spark.SparkException:Kryoserializationfailed:BufferoverFolw.Available:0,rquired58900977,Toavoidthis,increasespark.kryoserializer.b
- Spark大数据分析与实战笔记(第四章 Spark SQL结构化数据文件处理-01)
想你依然心痛
#Spark大数据分析与实战spark数据分析笔记
文章目录每日一句正能量第4章SparkSQL结构化数据文件处理章节概要4.1SparkSQL概述4.1.1SparkSQL的简介4.1.2SparkSQL架构每日一句正能量世事洞明皆学问,人情练达即文章。第4章SparkSQL结构化数据文件处理章节概要在很多情况下,开发工程师并不了解Scala语言,也不了解Spark常用API,但又非常想要使用Spark框架提供的强大的数据分析能力。Spark的开
- Hadoop/Spark 生态
不辉放弃
大数据
Hadoop/Spark生态是大数据处理的核心技术体系,专为解决海量数据的存储、计算和分析问题而设计。以下从底层原理到核心组件详细讲解,帮助你快速建立知识框架!一、为什么需要Hadoop/Spark?传统单机瓶颈:数据量超过单机存储极限(如PB级数据)计算任务无法在合理时间内完成(如TB级日志分析)核心解决思路:分布式存储:数据拆分到多台机器存储(如HDFS)分布式计算:任务拆分到多台机器并行处理
- 数据湖和Apache Iceberg,Apache Hudi,Delta Lake
西土城计划
apachebigdata大数据
1什么是数据湖?数据湖这个词目前已经流行开来,逐步被数据相关的从业者接受,可能还有很多人不太清楚它和Hadoop,Hive,Spark这些大数据系统的区别,简单说数据湖是个业务概念,主要是为了区别传统数仓这个概念的(传统数仓的定义:datawarehouse,是用于报告和数据分析的系统,被认为是商业智能的核心组件)。为什么说是“传统数仓”,因为Hadoop于2006年诞生至今已有10多年了,在这期
- PySpark二:常见数据格式及如何读写
pysparkpython
在日常工作中,常见的数据文件格式有csv,json和parquet.Comma-separatedvalues(CSV)是一种直接以纯文本方式保存的文件,通常第一行定义了列名,后面是数据。没列之间用逗号分割。因为这个格式是纯文本的,几乎可以用文本编辑器都可以打开。Json也是常见的格式,个人理解可以看做是Key-valuepair来保存数据。如果有很多行数据,每一行的数据都有相同的key的话,个人
- 读取hdfs上snappy压缩文件并发送kafka的两种方式速度测试
今天上上签
Spark&Hbasespark大数据javajson
最近有一个需求,因为第一次做,踩了许多坑,故在此记录一下需求背景:现在hdfs上有一份snappy压缩的文件,要把这份文件中的数据读出来并发送给kafka解决思路平时我90%的时间都是在消费kafka,现在要写入kafka,我承认我第一反应是懵逼的;不过这并难不倒天资聪慧的我,我首先想到的就是用spark去读出数据后,直接发送给kafka;soeasy~问题记录Ⅰ、解析json问题我用spark很
- 【Python系列】高效Parquet数据处理策略:合并与分析实践
小团团0
python开发语言
在大数据时代,数据的存储、处理和分析变得尤为重要。Parquet作为一种高效的列存储格式,被广泛应用于大数据处理框架中,如ApacheSpark、ApacheHive等。Parquet是一个开源的列存储格式,它被设计用于支持复杂的嵌套数据结构,同时提供高效的压缩和编码方案,以优化存储空间和查询性能。以下将详细介绍如何使用Python对Parquet文件进行数据处理与合并,并提供相应的源码示例。一、
- spark explain如何使用
fzip
Sparkspark执行计划
在Spark中,explain是分析SQL或DataFrame执行计划的核心工具,通过不同模式可展示查询优化和执行的详细信息,默认情况下,这个语句只提供关于物理计划的信息。以下是具体使用方法及不同模式的作用:1.explain的基本语法在Spark3.0及以上版本,explain支持多种模式参数,通过mode指定输出格式:#DataFrame调用方式df.explain(mode="simple"
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- pyspark学习rdd处理数据方法——学习记录
亭午
学习
python黑马程序员"""文件,按JSON字符串存储1.城市按销售额排名2.全部城市有哪些商品类别在售卖3.上海市有哪些商品类别在售卖"""frompysparkimportSparkConf,SparkContextimportosimportjsonos.environ['PYSPARK_PYTHON']=r"D:\anaconda\envs\py10\python.exe"#创建Spark
- 数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比(1)
2301_79098963
程序员知识图谱人工智能
4.Schema变更支持对比项ApacheIcebergApacheHudiApachePaimonSchemaEvolutionALLback-compatibleback-compatibleSelf-definedschemaobjectYESNO(spark-schema)NO(我理解,不准确)SchemaEvolution:指schema变更的支持情况,我的理解是hudi仅支持添加可选列
- Apache大数据旭哥优选大数据选题
Apache大数据旭
大数据定制选题javahadoopspark开发语言ideahive数据库架构
定制旭哥服务,一对一,无中介包安装+答疑+售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、spark、hive、hbase、flink、SparkStreaming、kafka、flume、sqoop分析+推
- Azure Delta Lake、Databricks和Event Hubs实现实时欺诈检测
weixin_30777913
azure云计算
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合AzureEventHubs/Kafka摄入实时数据,通过DeltaLake实现Exactly-Once语义,实时欺诈检测(流数据写入DeltaLake,批处理模型实时更新),以及具体实现的详细步骤和关键PySpark代码。完整实现代码需要根据具体数据格式和业务规则进行调整,建议通过DatabricksR
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- 基于Azure云平台构建实时数据仓库
weixin_30777913
云计算azure开发语言sparkpython
设计Azure云架构方案实现AzureDeltaLake和AzureDatabricks,结合电商网站的流数据,构建实时数据仓库,支持T+0报表(如电商订单分析),具以及具体实现的详细步骤和关键PySpark代码。一、架构设计[电商网站]→[AzureEventHubs]→[AzureDatabricksStreaming]↓[AzureDeltaLake]←→[DatabricksSQLAnal
- 优化Apache Spark性能之JVM参数配置指南
weixin_30777913
jvmspark大数据开发语言性能优化
ApacheSpark运行在JVM之上,JVM的垃圾回收(GC)、内存管理以及堆外内存使用情况,会直接对Spark任务的执行效率产生影响。因此,合理配置JVM参数是优化Spark性能的关键步骤,以下将详细介绍优化策略和配置建议。通过以下优化方法,可以显著减少GC停顿时间、提升内存利用率,进而提高Spark作业吞吐量和数据处理效率。同时,要根据具体的工作负载和集群配置进行调整,并定期监控Spark应
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 【新品发售】NVIDIA 发布全球最小个人 AI 超级计算机 DGX Spark
segmentfault
GTC2025大会上,NVIDIA正式推出了搭载NVIDIAGraceBlackwell平台的个人AI超级计算机——DGXSpark。赞奇可接受预订,直接私信后台即刻预订!DGXSpark(前身为ProjectDIGITS)支持AI开发者、研究人员、数据科学家和学生,在台式电脑上对大模型进行原型设计、微调和推理。用户可以在本地运行这些模型,或将其部署在NVIDIADGXCloud或任何其他加速云或
- Kafka Connect Node.js Connector 指南
丁操余
KafkaConnectNode.jsConnector指南kafka-connectequivalenttokafka-connect:wrench:fornodejs:sparkles::turtle::rocket::sparkles:项目地址:https://gitcode.com/gh_mirrors/ka/kafka-connect项目介绍KafkaConnectNode.jsConn
- JAVA学习-练习试用Java实现“对大数据集中的网络日志进行解析和异常行为筛查”
守护者170
java学习java学习
问题:编写一个Spark程序,对大数据集中的网络日志进行解析和异常行为筛查。解答思路:下面是一个简单的Spark程序示例,用于解析网络日志并筛查异常行为。这个示例假设日志文件格式如下:timestamp,ip_address,user_id,action,event,extra_info2023-01-0112:00:00,192.168.1.1,123,login,success,none202
- JAVA学习-练习试用Java实现“实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选”
守护者170
java学习java学习
问题:实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选。解答思路:要实现一个Spark应用,对大数据集中的文本数据进行情感分析和关键词筛选,需要按照以下步骤进行:1.环境准备确保的环境中已经安装了ApacheSpark。可以从[ApacheSpark官网](https://spark.apache.org/downloads.html)下载并安装。2.创建Spark应用以下是
- Hive与Spark的UDF:数据处理利器的对比与实践
窝窝和牛牛
hivesparkhadoop
文章目录Hive与Spark的UDF:数据处理利器的对比与实践一、UDF概述二、HiveUDF解析实现原理代码示例业务应用三、SparkUDF剖析-JDBC方式使用SparkThriftServer设置通过JDBC使用UDFSparkUDF的Java实现(用于JDBC方式)通过beeline客户端连接使用业务应用场景四、Hive与SparkUDF在JDBC模式下的对比五、实际部署与最佳实践六、总结
- 尚硅谷电商数仓6.0,hive on spark,spark启动不了
新时代赚钱战士
hivesparkhadoop
在datagrip执行分区插入语句时报错[42000][40000]Errorwhilecompilingstatement:FAILED:SemanticExceptionFailedtogetasparksession:org.apache.hadoop.hive.ql.metadata.HiveException:FailedtocreateSparkclientforSparksessio
- 数据中台(二)数据中台相关技术栈
Yuan_CSDF
#数据中台
1.平台搭建1.1.Amabari+HDP1.2.CM+CDH2.相关的技术栈数据存储:HDFS,HBase,Kudu等数据计算:MapReduce,Spark,Flink交互式查询:Impala,Presto在线实时分析:ClickHouse,Kylin,Doris,Druid,Kudu等资源调度:YARN,Mesos,Kubernetes任务调度:Oozie,Azakaban,AirFlow,
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文