这章主要讲了如何做推荐,现在推荐最常用的几种算法:Collaborative Filtering、Cluster Models、Search-Based Methods、Item-to-Item Collaborative Filtering.前两种是通过找相似的Customer,后两种通过找相似的Item.论文Amazon.com Recommendations Item-to-Item Collaborative Filtering 对这几种算法都有介绍。这章主要提了Collaborative Filtering和tem-to-Item Collaborative Filtering。 Collaborative Filtering:通过搜索大量的Customer数据集来找到那一小撮和你口味相似的。书中举了一个电影评论的例子,每个人都对一些电影进行评等级,通过这些数据来找到和你口味相似的人,以及对你没有看过的电影做推荐,并以这个例子演示了如何做推荐。
准备数据:(本笔记的代码使用ruby实现,python代码的实现见原书)
critics={ 'Lisa Rose' => {'Lady in the Water' => 2.5, 'Snakes on a Plane' => 3.5, 'Just My Luck' => 3.0, 'Superman Returns' => 3.5, 'You, Me and Dupree' => 2.5, 'The Night Listener' => 3.0}, 'Gene Seymour' => {'Lady in the Water' => 3.0, 'Snakes on a Plane' => 3.5, 'Just My Luck' => 1.5, 'Superman Returns' => 5.0, 'The Night Listener'=> 3.0, 'You, Me and Dupree' => 3.5}, 'Michael Phillips' => {'Lady in the Water' => 2.5, 'Snakes on a Plane' => 3.0, 'Superman Returns' => 3.5, 'The Night Listener' => 4.0}, 'Claudia Puig' => {'Snakes on a Plane' => 3.5, 'Just My Luck' => 3.0, 'The Night Listener' => 4.5, 'Superman Returns' => 4.0, 'You, Me and Dupree' => 2.5}, 'Mick LaSalle'=> {'Lady in the Water' => 3.0, 'Snakes on a Plane' => 4.0, 'Just My Luck' => 2.0, 'Superman Returns' => 3.0, 'The Night Listener' => 3.0, 'You, Me and Dupree' => 2.0}, 'Jack Matthews'=> {'Lady in the Water' => 3.0, 'Snakes on a Plane' => 4.0, 'The Night Listener'=> 3.0, 'Superman Returns'=> 5.0, 'You, Me and Dupree' => 3.5}, 'Toby' => {'Snakes on a Plane' =>4.5,'You, Me and Dupree' =>1.0,'Superman Returns' => 4.0} }
定义相似度:
欧拉距离:
代码实现:
def sim_distance(prefs,person1,person2) si = {} prefs[person1].each_key do |item| si[item] = 1 if prefs[person2][item] end return 0 if si.empty? sum_of_squares = si.keys.inject(0) do |sum,item| sum + (prefs[person1][item] - prefs[person2][item]) ** 2 end return 1 / (1 + sum_of_squares) end
Pearson Correlation Score:
代码实现:
def sim_pearson(prefs,person1,person2) si = {} prefs[person1].each_key do |item| si[item] = 1 if prefs[person2][item] end return 0 if si.empty? sum1 = si.keys.inject(0){|sum,item| sum + prefs[person1][item]} sum2 = si.keys.inject(0){|sum,item| sum + prefs[person2][item]} sum1Sq = si.keys.inject(0){|sum,item| sum + prefs[person1][item] ** 2} sum2Sq = si.keys.inject(0){|sum,item| sum + prefs[person2][item] ** 2} pSum = si.keys.inject(0){|sum,item| sum + prefs[person1][item] * prefs[person2][item]} num = pSum - (sum1 * sum2 / si.size) den = Math.sqrt((sum1Sq - sum1 ** 2 / si.size) * (sum2Sq - sum2 ** 2 / si.size)) return (if den == 0 then 0 else num/den end) end
待续