远程提交Map/Reduce任务

 

1. 将开发好MR代码打包成jar。添加到distributed cache中。

 

bin/hadoop fs -copyFromLocal /root/stat-analysis-mapred-1.0-SNAPSHOT.jar /user/root/lib

 

2.  在服务器端创建和你客户端一模一样的用户。创建目录 /tmp/hadoop-root/stagging/用户 

 

3.  客户端提交job的代码

 

	Configuration conf = HBaseConfiguration.create();
	        conf.set("hbase.zookeeper.quorum", "node.tracker1");
	        conf.set("fs.default.name", "hdfs://node.tracker1:9000/hbase");
	        conf.set("mapred.job.tracker", "node.tracker1:9001");
	       
	        Job job = new Job(conf, "Hbase_FreqCounter1");
	      
	        job.setJarByClass(FreqCounter1.class);
	        Scan scan = new Scan();
	        String columns = "details"; // comma seperated
	        scan.addFamily(Bytes.toBytes(columns));
	        scan.setFilter(new FirstKeyOnlyFilter());
	        TableMapReduceUtil.initTableMapperJob("access_logs", scan, Mapper1.class, ImmutableBytesWritable.class,
	                IntWritable.class, job);
	        TableMapReduceUtil.initTableReducerJob("summary_user", Reducer1.class, job);
//	        TableMapReduceUtil.addDependencyJars(job);
	        
	        DistributedCache.addFileToClassPath(new Path("hdfs://node.tracker1:9000/user/root/lib/stat-analysis-mapred-1.0-SNAPSHOT.jar"),job.getConfiguration());
	        job.submit();
 

 

4.运行java application,登陆node的MR管理页面,可以看到


远程提交Map/Reduce任务_第1张图片

你可能感兴趣的:(reduce)