例如给出表child-parent表,要求输出grandchildren-grandparent表
给出:
child parent
Tom Lucy
Tom Jack
Jone Lucy
Jone Jack
Lucy Mary
Lucy Ben
Jack Alice
Jack Jesse
输出:
Tom Alice
Tom Jesse
Jone Alice
Jone Jesse
Tom Mary
Tom Ben
Jone Mary
Jone Ben
分析:这是一个单表连接的问题,把child-parent表当作数据库表child为主键,parent为外键的关系,问题变为单表连接的问题。我们利用MapReduce模型来解决这样的问题,左边的key为parent值,而value为左边的标志+child,而右表的key为child值,value为右表标志+parent值。具体的实现如下:
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class SingletonTableJoin02 extends Configured implements Tool {
public static class MapClass extends Mapper<LongWritable, Text, Text, Text> {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String childName = new String();
String parentName = new String();
String relationType = new String();
String line = value.toString();
String[] values = line.split(" ");
if (values[0].compareTo("child") != 0) {
childName = values[0];
parentName = values[1];
relationType = "1";// 左表标志
context.write(new Text(parentName), new Text(relationType + " "
+ childName));
relationType = "2";// 右表标志
context.write(new Text(childName), new Text(relationType + " "
+parentName));
}
}
}
public static class ReduceClass extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
String[] grandChild = new String[10];// 存放孙子的数组
int grandChildNum = 0;
String[] grandParent = new String[10];
int grandParentNum = 0;
Iterator<Text> it = values.iterator();
while (it.hasNext()) {
String[] record = it.next().toString().split(" ");
if(record.length==0) continue;
if (record[0].equals("1")) {//孙子放到一个数组里
grandChild[grandChildNum] = record[1];
grandChildNum++;
} else {//祖辈放到另外一个数组中
grandParent[grandParentNum] = record[1];
grandParentNum++;
}
}
if (grandChildNum != 0 && grandParentNum != 0) {//两个数组的X值为grandChild-grandParent关系
for (int i = 0; i < grandChildNum; i++) {
for (int j = 0; j < grandParentNum; j++) {
context.write(new Text(grandChild[i]), new Text(
grandParent[j]));
}
}
}
}
}
@Override
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = new Job(conf, "SingletonTableJoinJob02");
job.setJarByClass(SingletonTableJoin02.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MapClass.class);
//job.setCombinerClass(ReduceClass.class);
job.setReducerClass(ReduceClass.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new SingletonTableJoin02(),
args);
System.exit(res);
}
}
这样就可以实现类型数据库表间的操作了,其实Hive也是利用MapReduce操作实现的