自动提取Tag算法

根据词频分析取tag

 

  分析;把每个帖子进行分词,然后把词的出现频率倒序排列,取出前N个就作为TAG了。当然要一个板块一个板块的提取tag,如果把军事板块和情感板块的帖子混杂在一起提取tag,提取出来的tag相关性比较差一些,如果分开提取,相关性要好一些,整体效果好。好多时候做训练算法,语料很重要。先分词吧,自己写分词算法也是弄个词库,自己用正向最大匹配来分词,或者两个两个字的来当词,所以还不如直接用中科院那套呢,直接使用了隐式马尔可夫算法,效果虽说不是很好吧,也能满足需求了,对吧。具体测试代码、分词组件、词库下载见以下链接

http://www.cnblogs.com/edison1024/archive/2006/05/03/390832.html
得点了他那个广告才能显示下载地址,你就点吧,人家提供下载也不容易。分词后要去除停止词,停止词自己从网上搜索一份,如果不去除停止词,最后肯定是“了”,“的”,“我”等词出现的频率最高,你不会把这些常用词做tags吧,呵呵。当然NICTCLAS是可以标注词性的,你可以分词后把语气词、副词等虚词去了,这样更好一些,但我就懒得做了,直接分词、去除停止词两步。
完了计算每个词出现的频率就好说了,弄一个全局的字典,每个词出现一次增加一个计数,第一次出现先添加到字典,并计数为0,最后把出现次数在某个阈值以上的词插入到数据库里,这就是你要的tag了,先来看一下我的效果吧(大家别笑哦,我是从一个美女贴图论坛提取了一些帖子的主题当语料的,为了不降低博客园的PR值,就贴图,不贴文字了)。

自动提取Tag算法_第1张图片

开始上代码
先贴分词

namespace  WawaSoft.Search.Common
{
    
public sealed class WawaSplitWorder
    
{
        
static List<string> _stopWords = new List<string>();
        
static NICTCLAS _nictclas;
        
public static void Init()
        
{
            
try
            
{
                
//1、初始化分词器
                _nictclas = new NICTCLAS();
                _nictclas.OperateType 
= eOperateType.OnlySegment;
                _nictclas.OutputFormat 
= eOutputFormat.PKU;

                
//2、加载停止词
                using (StreamReader sr =
                    
new StreamReader("data\\StopWords.txt", Encoding.Default))
                
{
                    
string temp;
                    
while ((temp = sr.ReadLine()) != null)
                    
{
                        _stopWords.Add(temp);
                    }

                }

            }

            
catch (Exception ex)
            
{
                Trace.TraceError(
"初始化分词器错误:{0}", ex);
            }

        }


        
/// <summary>
        
/// 分词并去除停止词
        
/// </summary>
        
/// <param name="input"></param>
        
/// <returns></returns>

        public static IEnumerable<string> SplitWords(string input)
        
{
            Console.WriteLine(input);
            
            
//预处理,不处理那个分词组件有可能内存读写错误,那玩意儿写的不太健壮,容错性8行的说,呵呵
            input = input.Replace("/""");
            input 
= input.Replace(".""");
            
string result = string.Empty;
            List
<string> ret = null;
            
try
            
{
                
//1、分词
                _nictclas.ParagraphProcessing(input, ref result);
                ret 
= new List<string>(
                    result.Split(
new string[] "  " }, StringSplitOptions.RemoveEmptyEntries));
                
                
//2、去除干扰词
                List<string> needRemove = new List<string>();
                
foreach (string word in ret)
                
{
                    
foreach (string s in _stopWords)
                    
{
                        
if (string.Compare(s, word, false== 0)
                        
{
                            needRemove.Add(word);
                            
break;
                        }

                    }

                }


                
foreach (string removeWord in needRemove)
                
{
                    ret.Remove(removeWord);
                }

            }

            
catch (Exception ex)
            
{
                
//错误的时候除了打出错误详细信息后打出出错的上下文,传入的参数,临时变量等有助于从trace里分析错误,要不死了也不知道怎么死的
                Console.WriteLine("{0}\r\n{1}",input,ex);
            }


            
return ret;
        }

    }

}


 

计算词频

class  AutoGenTag
{
    
//大字典,保存每个词的词频,key是词,value是词频
    static Dictionary<string,int> _hashlist = new Dictionary<stringint>(10240);

    
public static void Excute()
    
{
        
//1、取出帖子,越多越好,越多提取的准确性越高
        IEnumerable<string> source = Dao.GetPostTitles();
        
foreach (string str in source)
        
{
            
//2、把每个帖子主题分词
            IEnumerable<string> words = WawaSplitWorder.SplitWords(str);
            
if(words == null)
                
continue;

            
//3、把每个词插入到大字典里,以前存在就把词频加1
            foreach (string word in words)
            
{
                
if(_hashlist.ContainsKey(word))
                
{
                    _hashlist[word]
++;
                }

                
else
                
{
                    _hashlist.Add(word,
0);
                }

            }

        }

        
//4、把大于某个阈值(这里是20)的词插入数据
        foreach (KeyValuePair<stringint> pair in _hashlist)
        
{
            
//如果一次循环插入几万个词,SQLSERVE每秒提交的批会很高,有可能CPU瞬间很高,Sleep(0)能让CPU长得慢点儿,Sleep(1)也行,不过我不知道这两个的区别。或者直接 用sqlserver的bilkcopy性能也8错
            Thread.Sleep(0);
            
if (pair.Value > 20)
            
{
                Console.WriteLine(
"{0}-{1}",pair.Key,pair.Value);
                Dao.addtags(pair.Key, pair.Value);
            }

        }

    }

}


 

你可能感兴趣的:(Tag提取算法)