Lucene5学习之FunctionQuery功能查询

       我猜,大家最大的疑问就是:不是已经有那么多Query实现类吗,为什么又设计一个FunctionQuery,它的设计初衷是什么,或者说它是用来解决什么问题的?我们还是来看看源码里是怎么解释FunctionQuery的:

Lucene5学习之FunctionQuery功能查询_第1张图片
        意思就是基于ValueSource来返回每个文档的评分即valueSourceScore,那ValueSource又是怎么东东?接着看看ValueSource源码里的注释说明:

Lucene5学习之FunctionQuery功能查询_第2张图片
 ValueSource是用来根据指定的IndexReader来实例化FunctionValues的,那FunctionValues又是啥?

Lucene5学习之FunctionQuery功能查询_第3张图片
         从接口中定义的函数可以了解到,FunctionValues提供了根据文档ID获取各种类型的DocValuesField域的值的方法,那这些接口返回的域值用来干嘛的,翻看FunctionQuery源码,你会发现:
Lucene5学习之FunctionQuery功能查询_第4张图片
 
Lucene5学习之FunctionQuery功能查询_第5张图片
 
Lucene5学习之FunctionQuery功能查询_第6张图片
       从上面几张图,我们会发现,FunctionQuery构造的时候需要提供一个ValueSource,然后在FunctionQuery的内部类AllScorer中通过valueSource实例化了FunctionValues,然后在计算FunctionQuery评分的时候通过FunctionValues获取DocValuesField的域值,域值和FunctionQuery的权重值相乘得到FunctionQuery的评分。

float score = qWeight * vals.floatVal(doc);

       那这里ValueSource又起什么作用呢,为什么不直接让FunctionQuery来构建FunctionValues,而是要引入一个中间角色ValueSource呢?

      因为FunctionQuery应该线程安全的,即允许多次查询共用同一个FunctionQuery实例,如果让FunctionValues直接依赖FunctionQuery,那可能会导致某个线程通过FunctionValues得到的docValuesField域值被另一个线程修改了,所以引入了一个ValuesSource,让每个FunctionQuery对应一个ValueSource,再让ValueSource去生成FunctionValues,因为docValuesField域值的正确性会影响到最后的评分。另外出于缓存原因,因为每次通过FunctionValues去加载docValuesField的域值,其实还是通过IndexReader去读取的,这就意味着有磁盘IO行为,磁盘IO次数可是程序性能杀手哦,所以设计CachingDoubleValueSource来包装ValueSource.不过CachingDoubleValueSource貌似还处在捐献模块,不知道下个版本是否会考虑为ValueSource添加Cache功能。

   

    ValueSource构造很简单,

public DoubleFieldSource(String field) {
    super(field);
  }

    你只需要提供一个域的名称即可,不过要注意,这里的域必须是DocValuesField,不能是普通的StringField,TextField,IntField,FloatField,LongField。

    那FunctionQuery可以用来解决什么问题?举个例子:比如你索引了N件商品,你希望通过某个关键字搜索时,出来的结果优先按最近上架的商品显示,再按商品和搜索关键字匹配度高低降序显示,即你希望最近上架的优先靠前显示,评分高的靠前显示。

     下面是一个FunctionQuery使用示例,模拟类似这样的场景:

     书籍的出版日期越久远,其权重因子会按天数一天天衰减,从而实现让新书自动靠前显示

package com.yida.framework.lucene5.function;

import java.io.IOException;
import java.util.Map;

import org.apache.lucene.index.DocValues;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.NumericDocValues;
import org.apache.lucene.queries.function.FunctionValues;
import org.apache.lucene.queries.function.valuesource.FieldCacheSource;

import com.yida.framework.lucene5.util.score.ScoreUtils;

/**
 * 自定义ValueSource[计算日期递减时的权重因子,日期越近权重值越高]
 * @author Lanxiaowei
 *
 */
public class DateDampingValueSouce extends FieldCacheSource {
	//当前时间
	private static long now;
	public DateDampingValueSouce(String field) {
		super(field);
		//初始化当前时间
		now = System.currentTimeMillis();
	}
	/**
	 * 这里Map里存的是IndexSeacher,context.get("searcher");获取
	 */
	@Override
	public FunctionValues getValues(Map context, LeafReaderContext leafReaderContext)
			throws IOException {
		final NumericDocValues numericDocValues = DocValues.getNumeric(leafReaderContext.reader(), field);	
		return new FunctionValues() {
			@Override
			public float floatVal(int doc) {
				return ScoreUtils.getNewsScoreFactor(now, numericDocValues,doc);
			}
			@Override
			public int intVal(int doc) {
				return (int) ScoreUtils.getNewsScoreFactor(now, numericDocValues,doc);
			}
			@Override
			public String toString(int doc) {
				return description() + '=' + intVal(doc);
			}
		};
	}
	
}

 

package com.yida.framework.lucene5.util.score;

import org.apache.lucene.index.NumericDocValues;

import com.yida.framework.lucene5.util.Constans;

/**
 * 计算衰减因子[按天为单位]
 * @author Lanxiaowei
 *
 */
public class ScoreUtils {
	/**存储衰减因子-按天为单位*/
	private static float[] daysDampingFactor = new float[120];
	/**降级阀值*/
	private static float demoteboost = 0.9f;
	static {
		daysDampingFactor[0] = 1;
		//第一周时权重降级处理
		for (int i = 1; i < 7; i++) {
			daysDampingFactor[i] = daysDampingFactor[i - 1] * demoteboost;
		}
		//第二周
		for (int i = 7; i < 31; i++) {			
			daysDampingFactor[i] = daysDampingFactor[i / 7 * 7 - 1]
					* demoteboost;
		}
		//第三周以后
		for (int i = 31; i < daysDampingFactor.length; i++) {
			daysDampingFactor[i] = daysDampingFactor[i / 31 * 31 - 1]
					* demoteboost;
		}
	}
	
	//根据相差天数获取当前的权重衰减因子
	private static float dayDamping(int delta) {
		float factor = delta < daysDampingFactor.length ? daysDampingFactor[delta]
				: daysDampingFactor[daysDampingFactor.length - 1];
		System.out.println("delta:" + delta + "-->" + "factor:" + factor);
		return factor;
	}
	
	public static float getNewsScoreFactor(long now, NumericDocValues numericDocValues, int docId) {
		long time = numericDocValues.get(docId);
		float factor = 1;
		int day = (int) (time / Constans.DAY_MILLIS);
		int nowDay = (int) (now / Constans.DAY_MILLIS);
		System.out.println(day + ":" + nowDay + ":" + (nowDay - day));
		// 如果提供的日期比当前日期小,则计算相差天数,传入dayDamping计算日期衰减因子
		if (day < nowDay) {
			factor = dayDamping(nowDay - day);
		} else if (day > nowDay) {
			//如果提供的日期比当前日期还大即提供的是未来的日期
			factor = Float.MIN_VALUE;
		} else if (now - time <= Constans.HALF_HOUR_MILLIS && now >= time) {
			//如果两者是同一天且提供的日期是过去半小时之内的,则权重因子乘以2
			factor = 2;
		}
		return factor;
	}
	
	public static float getNewsScoreFactor(long now, long time) {
		float factor = 1;
		int day = (int) (time / Constans.DAY_MILLIS);
		int nowDay = (int) (now / Constans.DAY_MILLIS);
		// 如果提供的日期比当前日期小,则计算相差天数,传入dayDamping计算日期衰减因子
		if (day < nowDay) {
			factor = dayDamping(nowDay - day);
		} else if (day > nowDay) {
			//如果提供的日期比当前日期还大即提供的是未来的日期
			factor = Float.MIN_VALUE;
		} else if (now - time <= Constans.HALF_HOUR_MILLIS && now >= time) {
			//如果两者是同一天且提供的日期是过去半小时之内的,则权重因子乘以2
			factor = 2;
		}
		return factor;
	}
	public static float getNewsScoreFactor(long time) {
		long now = System.currentTimeMillis();
		return getNewsScoreFactor(now, time);
	}
}

     

package com.yida.framework.lucene5.function;

import java.io.IOException;
import java.nio.file.Paths;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.LongField;
import org.apache.lucene.document.NumericDocValuesField;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexWriterConfig.OpenMode;
import org.apache.lucene.index.Term;
import org.apache.lucene.queries.CustomScoreQuery;
import org.apache.lucene.queries.function.FunctionQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.Sort;
import org.apache.lucene.search.SortField;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
/**
 * FunctionQuery测试
 * @author Lanxiaowei
 *
 */
public class FunctionQueryTest {
	private static final DateFormat formate = new SimpleDateFormat("yyyy-MM-dd");
	public static void main(String[] args) throws Exception {
		String indexDir = "C:/lucenedir-functionquery";
		Directory directory = FSDirectory.open(Paths.get(indexDir));
	    
	    //System.out.println(0.001953125f * 100000000 * 0.001953125f / 100000000);
	    //创建测试索引[注意:只用创建一次,第二次运行前请注释掉这行代码]
	    //createIndex(directory);
		
		
	    IndexReader reader = DirectoryReader.open(directory);
	    IndexSearcher searcher = new IndexSearcher(reader);
	    //创建一个普通的TermQuery
	    TermQuery termQuery = new TermQuery(new Term("title", "solr"));
	    //根据可以计算日期衰减因子的自定义ValueSource来创建FunctionQuery
	    FunctionQuery functionQuery = new FunctionQuery(new DateDampingValueSouce("publishDate")); 
	    //自定义评分查询[CustomScoreQuery将普通Query和FunctionQuery组合在一起,至于两者的Query评分按什么算法计算得到最后得分,由用户自己去重写来干预评分]
	    //默认实现是把普通查询评分和FunctionQuery高级查询评分相乘求积得到最终得分,你可以自己重写默认的实现
	    CustomScoreQuery customScoreQuery = new CustomScoreQuery(termQuery, functionQuery);
	    //创建排序器[按评分降序排序]
	    Sort sort = new Sort(new SortField[] {SortField.FIELD_SCORE});
	    TopDocs topDocs = searcher.search(customScoreQuery, null, Integer.MAX_VALUE, sort,true,false);
	    ScoreDoc[] docs = topDocs.scoreDocs;
	    
		for (ScoreDoc scoreDoc : docs) {
			int docID = scoreDoc.doc;
			Document document = searcher.doc(docID);
			String title = document.get("title");
			String publishDateString = document.get("publishDate");
			System.out.println(publishDateString);
			long publishMills = Long.valueOf(publishDateString);
			Date date = new Date(publishMills);
			publishDateString = formate.format(date);
			float score = scoreDoc.score;
			System.out.println(docID + "  " + title + "                    " + 
			    publishDateString + "            " + score);
		}
	    
	    reader.close();
	    directory.close();
	}
	
	/**
	 * 创建Document对象
	 * @param title              书名
	 * @param publishDateString  书籍出版日期
	 * @return
	 * @throws ParseException
	 */
	public static Document createDocument(String title,String publishDateString) throws ParseException {
		Date publishDate = formate.parse(publishDateString);
		Document doc = new Document();
		doc.add(new TextField("title",title,Field.Store.YES));
		doc.add(new LongField("publishDate", publishDate.getTime(),Store.YES));
		doc.add(new NumericDocValuesField("publishDate", publishDate.getTime()));
		return doc;
	}
	
	//创建测试索引
	public static void createIndex(Directory directory) throws ParseException, IOException {
		Analyzer analyzer = new StandardAnalyzer();
		IndexWriterConfig indexWriterConfig = new IndexWriterConfig(analyzer);
		indexWriterConfig.setOpenMode(OpenMode.CREATE_OR_APPEND);
		IndexWriter writer = new IndexWriter(directory, indexWriterConfig);
	    
		//创建测试索引
		Document doc1 = createDocument("Lucene in action 2th edition", "2010-05-05");
		Document doc2 = createDocument("Lucene Progamming", "2008-07-11");
		Document doc3 = createDocument("Lucene User Guide", "2014-11-24");
		Document doc4 = createDocument("Lucene5 Cookbook", "2015-01-09");
		Document doc5 = createDocument("Apache Lucene API 5.0.0", "2015-02-25");
		Document doc6 = createDocument("Apache Solr 4 Cookbook", "2013-10-22");
		Document doc7 = createDocument("Administrating Solr", "2015-01-20");
		Document doc8 = createDocument("Apache Solr Essentials", "2013-08-16");
		Document doc9 = createDocument("Apache Solr High Performance", "2014-06-28");
		Document doc10 = createDocument("Apache Solr API 5.0.0", "2015-03-02");
		
		writer.addDocument(doc1);
		writer.addDocument(doc2);
		writer.addDocument(doc3);
		writer.addDocument(doc4);
		writer.addDocument(doc5);
		writer.addDocument(doc6);
		writer.addDocument(doc7);
		writer.addDocument(doc8);
		writer.addDocument(doc9);
		writer.addDocument(doc10);
		writer.close();
	}
}

   

 

    运行测试结果如图:
Lucene5学习之FunctionQuery功能查询_第7张图片
 

       demo代码请在最底下的附件里下载如果你需要的话,OK,打完收工!

 

      如果你还有什么问题请加我Q-Q:7-3-6-0-3-1-3-0-5,

或者加裙
一起交流学习!

你可能感兴趣的:(Lucene,FunctionQuery,ValueSource)