4、内存管理机制---运行时数据区

第二部分、内存管理机制

1、运行时数据区

2、内存溢出异常

3、垃圾收集器

4、内存分配策略

5、内存调优分析

 

Java的内存管理就是对象的分配和释放问题。

         分配 :内存的分配是由程序完成的,程序员需要通过关键字new (或者反射newinstance)为每个对象申请内存空间 (基本类型除外),所有的对象都在堆 (Heap)中分配空间。
         释放 :对象的释放是由垃圾回收机制决定和执行的,这样做确实简化了程序员的工作。但同时加重了JVM的工作。因为,GC为了能够正确释放对象,GC必须监控每一个对象的运行状态,包括对象的申请、引用、被引用、赋值等,GC都需要进行监控。

 

JVM主要包含三大核心部分:运行时数据区,类加载器和执行引擎。

根据《Java虚拟机规范(第2版)》的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域:

4、内存管理机制---运行时数据区_第1张图片

 

1、程序计数器(Program   Counter  Register )

         程序计数器是一块较小的线程私有内存,它的作用是记录 当前线程所执行的字节码行数。解释器java.exe通过改变计数器值来选取下一条字节码指令;

         java多线程是通过线程切换来实现几个线程同时进行,但一个处理器(对于多核处理器来说是一个内核)只会执行一条线程,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器;

         如果线程执行的是一个Java方法,计数器记录的是字节码语句的地址;如果执行的是Natvie方法,计数器值自设为空(Undefined)。

 

2、Java虚拟机栈(Java Virtual Machine  Stacks)

         虚拟机栈也是线程私有的,虚拟机栈描述的是Java方法执行时的内存模型:每个方法被执行时会创建一个栈帧(StackFrame)用于存储局部变量表、操作数栈、动态链接、方法出口(见16章,字节码执行引擎)等信息。一个方法被调用到完成,就对应着一个栈帧  在虚拟机栈中  入栈和出栈。

         局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、reference类型(指针或句柄)和returnAddress类型。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

         局部变量表(参数和局部变量)是线程私有的;

         虚拟机栈会出现的两种异常:线程请求深度大于允许深度,将抛出StackOverflowError异常;如果虚拟机栈支持动态扩展(Groovy)当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。

 

3、本地方法栈(Native  Method  Stacks)

         本地方法栈同样也是线程私有的,与虚拟机栈作用是相似,区别是本地方法栈只为Native方法服务。虚拟机规范中对本地方法栈强制规定,虚拟机可以自由实现它。甚至有的虚拟机(HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。

 

4、Java堆(JavaHeap)

          堆是占jvm内存最大的一块,Java堆是所有线程共享的一块内存,在虚拟机启动时创建。该内存的唯一目的就是存放对象实例,所有的对象实例以及数组都要在堆上分配,但是随着JIT编译器的发展与逃逸分析技术的逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化发生,所有的对象都分配在堆上也渐渐变得不是那么“绝对”了。

          

          堆是垃圾收集器的主要工作区域,也被称做“GC堆”(Garbage Collected Heap)。如果从内存回收的角度看,现在收集器基本采用分代收集算法,所以Java堆可以细分为:新生代和老年代;再细致一点的有Eden空间、FromSurvivor空间、ToSurvivor空间等。如果从内存分配的角度看,Java堆可以分线程私有缓冲区(ThreadLocalAllocationBuffer,TLAB)。

          根据Java虚拟机规范的规定,Java堆可以划分在物理上不连续的内存空间中,只要逻辑上是连续的即可,就像磁盘空间一样。在实现时,heap即可以是固定大小的,也可以是可扩展的,当前主流的虚拟机都是可扩展的(通过-Xmx和-Xms控制)。如果在堆中没有内存完成实例分配,且也无法再扩展时,将会抛出OutOfMemoryError异常。

 

5、方法区(Method Area)

         方法区也是所有线程共享内存,它用于存储(已被)虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java堆区分开来。

         

         在HotSpot虚拟机上习惯称为“永久代”(Permanent Generation),本质上两者并不等价,仅仅是因为HotSpot虚拟机的设计团队选择把GC分代收集扩展至方法区,或者说使用永久代来实现方法区而已。对于其他虚拟机(如BEAJRockit、IBMJ9等)来说是不存在永久代的概念的。即使是HotSpot虚拟机本身,根据官方发布的路线图信息,现在也有放弃永久代并“搬家”至NativeMemory来实现方法区的规划了。当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。

 

#方法编译后存放位置?在方法区,线程共享,执行时在jvm栈。 

 

6、运行时常量池(Runtime Constant Pool)是方法区的一部分

        存放方法执行时的符号引用(不是直接引用,在字节码执行引擎时转换为直接引用,一般编译时生成,如果支持动态扩展,在执行引擎时也可以生成符号引用;

        字节码常量池是静态的,运行时常量池可能是动态的,但他们的初始是相同的;

7、直接内存(Direct Memory)

       直接内存不是jvm管理的内存,是java NIO使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。避免在Java堆和Native堆中来回复制数据,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括RAM及SWAP区或者分页文件)的大小及处理器寻址空间的限制。服务器管理员配置虚拟机参数时,一般会根据实际内存设置-Xmx等参数信息,但经常会忽略掉直接内存,使得各个内存区域的总和大于物理内存限制(包括物理上的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

 

 

$对象的创建、布局、访问:

 

#对象的创建(详见类加载机制):        

        创建对象通常是一个new关键字生成,在jvm中,对象创建是怎样实现的呢?

        对象占用内存大小 是在编译后确定的还是在类加载完后确定的?

        jvm遇到一条new指令时(没有被初始化的情况),首先去通过这个指令的参数 在运行时常量池中找到这个类的符号引用,再执行类加载(加载、验证、准备、解析、初始化);执行类加载就会为新生的对象实例分配堆内存,对象所需要的内存大小在类加载完后就完全确定。

 

        如果内存是规整(将空闲和使用中的内存绝对分开,中间位置为临界指针),使用时向空闲区移动,如果不是规整的jvm有一个空闲列表,来记录哪块内存是空闲的,在分配内存时找到一块适合对象大小的内存块给对象使用;jvm的gc算法决定了使用哪种内存分配方式,serial、parnew带compat的采用规整的指针位移,使用CMS基于mark-sweep算法采用空闲列表;

        在创建对象实例的过程,涉及到指针偏移和指向某个内存块的过程,然而在多线程并发的时候,可能会出现线程安全问题,比如:指针正在给new A()分配内存,new B()同时请求指针分配内存,jvm提供两种解决方案:一种是对分配内存空间过程实行同步处理(锁定,即所有实例按顺序分配);另一种是线程预先分配到小块内存,称为本地线程分配缓冲(thread local alloction buffer,TLAB),在线程用完tlab再获得新的tlab时进行同步锁定,显然第二种是常用方法,虚拟机是否使用tlab,通过-xx.+/-usertlab参数设定。

       在对象获得堆内存之后,jvm将对象获得内存都格式化(除对象头),如果使用tlab,这一过程在线程分配内存时完成,这一过程保证新对象即使属性全为空,也不会报空指针异常,在jvm类加载器完成加载之后,为实例分配堆内存及方法区,之后对实例进行必要的配置(记录是哪个类的实例、记录所属类的信息、配置哈希吗、配置对象的gc分代等),这些信息存放在对象头中;完成上面的工作,从jvm角度一个对象的创建成功了,从一个对象来看,生命周期才刚刚开始。

 

#对象的布局:

       在HotSpot(jdk1.3后作为JVM)虚拟机,内存对对象的存储可以分为3块:对象头(header)、数据(instance data)和对齐填充(padding),这里没有说方法区。

       对象头包括两部分:一部分为对象运行时数据(hashcode、gc分代、锁状态、偏向线程、线程锁、偏向时间戳等),另一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是谁的实例,但查找对象元数据并不一定要经过对象本身(稍后详解);若对象时一个对象数组,对象头中还一块来记录数组的长度,因为jvm可以通过元数据确定对象的大小而不能确定数组的大小。

        数据:无论是从父类继承还是子类新增的属性,都需要记录,而记录的顺序与类中定义的顺序是不一致的,记录顺序是根据jvm字段额定长度和类中定义的顺序生成,long/double,int,short/char,byte/boolean,oop(普通对象)相同长度的分配在一起,在满足上面的顺序情况下,父类属性在子类属性之前记录;Hotspot规定对象大小额定为8的倍数,而oop长度可能不是8的倍数,jvm就会采取对齐填充;

 

#对象访问

       创建对象之后,需要访问对象才能完成我们预定的功能,如何实现访问呢?对象访问也是通过jvm实现。

       在jvm栈中讲到reference类型,引用类型简单的讲就是指向堆内存中具体对象的索引,访问方式有句柄方式和指针方式;

 

       1、使用句柄方式:java堆内存中将划分出一块内存来作为句柄池空间,reference实例就是对象的句柄地址,而句柄中包含了对象数据和基本类型的具体栈地址;优点reference中储存的是稳定的句柄地址,在对象被移动(垃圾回收时,移动对象在堆内存中的地址)时只改变句柄中指向对象的指针,而reference不做修改;

4、内存管理机制---运行时数据区_第2张图片

2、使用指针方式:reference实例指向堆内存对象实例:优点是节省reference到句柄的指针定位开销,HotSpot就是采用指针方式访问;
 
4、内存管理机制---运行时数据区_第3张图片

 

你可能感兴趣的:(内存管理)