寻找凸包的graham 扫描法

1,点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内。
2,凸包最常用的凸包算法是Graham扫描法和Jarvis步进法。
3,Graham扫描法:
首先,找到所有点中最左边的(y坐标最小的),如果y坐标相同,找x坐标最小的.
以这个点为基准求所有点的极角(atan2(y-y0,x-x0)),并按照极角对这些点排序,前述基准点在最前面,设这些点为P[0]..P[n-1.
注:这样预处理后,保证p[0],p[1]和p[n-1]都是凸包上的点.
建立一个栈,初始时P[0]、P[1]、P[2]进栈,对于 P[3..n-1]的每个点,若栈顶的两个点与它不构成"向左转"的关系,则将栈顶的点出栈,直至没有点需要出栈以后将当前点进栈;
所有点处理完之后栈中保存的点就是凸包了。
图示:

寻找凸包的graham 扫描法

4,实现代码
#include <iostream>
#include <cmath>
using namespace std;

/*
PointSet[]:输入的点集
ch[]:输出的凸包上的点集,按照逆时针方向排列
n:PointSet中的点的数目
len:输出的凸包上的点的个数
*/

struct Point
{
    float x,y;
};

//小于0,说明向量p0p1的极角大于p0p2的极角
float multiply(Point p1,Point p2,Point p0)
{
    return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
}

float dis(Point p1,Point p2)
{
    return(sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)));
}


void Graham_scan(Point PointSet[],Point ch[],int n,int &len)
{
    int i,j,k=0,top=2;
    Point tmp;

    //找到最下且偏左的那个点
    for(i=1;i<n;i++)
        if ((PointSet[i].y<PointSet[k].y)||((PointSet[i].y==PointSet[k].y)&&(PointSet[i].x<PointSet[k].x)))
            k=i;
    //将这个点指定为PointSet[0]
    tmp=PointSet[0];
    PointSet[0]=PointSet[k];
    PointSet[k]=tmp;

    //按极角从小到大,距离偏短进行排序
    for (i=1;i<n-1;i++)
    {
        k=i;
        for (j=i+1;j<n;j++)
            if( (multiply(PointSet[j],PointSet[k],PointSet[0])>0)
                ||((multiply(PointSet[j],PointSet[k],PointSet[0])==0)
                    &&(dis(PointSet[0],PointSet[j])<dis(PointSet[0],PointSet[k]))) )
                k=j;//k保存极角最小的那个点,或者相同距离原点最近
        tmp=PointSet[i];
        PointSet[i]=PointSet[k];
        PointSet[k]=tmp;
    }
    //第三个点先入栈
    ch[0]=PointSet[0];
    ch[1]=PointSet[1];
    ch[2]=PointSet[2];
    //判断与其余所有点的关系
    for (i=3;i<n;i++)
    {
        //不满足向左转的关系,栈顶元素出栈
        while(multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;
        //当前点与栈内所有点满足向左关系,因此入栈.
        ch[++top]=PointSet[i];
    }
    len=top+1;
}

const int maxN=1000;
Point PointSet[maxN];
Point ch[maxN];
int n;
int len;

int main()
{
    int n=5;
    float x[]={0,3,4,2,1};
    float y[]={0,0,0,3,1};
    for(int i=0;i<n;i++)
    {
        PointSet[i].x=x[i];
        PointSet[i].y=y[i];
    }
    Graham_scan(PointSet,ch,n,len);
    for(int i=0;i<len;i++)
        cout<<ch[i].x<<" "<<ch[i].y<<endl;
    return 0;
}


5,应用: http://acm.pku.edu.cn/JudgeOnline/problem?id=1113
实现代码:
#include <iostream>
#include <cmath>
using namespace std;

/*
PointSet[]:输入的点集
ch[]:输出的凸包上的点集,按照逆时针方向排列
n:PointSet中的点的数目
len:输出的凸包上的点的个数
*/

struct Point
{
    float x,y;
};

//小于0,说明向量p0p1的极角大于p0p2的极角
float multiply(Point p1,Point p2,Point p0)
{
    return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));
}

float dis(Point p1,Point p2)
{
    return(sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)));
}


void Graham_scan(Point PointSet[],Point ch[],int n,int &len)
{
    int i,j,k=0,top=2;
    Point tmp;

    //找到最下且偏左的那个点
    for(i=1;i<n;i++)
        if ((PointSet[i].y<PointSet[k].y)||((PointSet[i].y==PointSet[k].y)&&(PointSet[i].x<PointSet[k].x)))
            k=i;
    //将这个点指定为PointSet[0]
    tmp=PointSet[0];
    PointSet[0]=PointSet[k];
    PointSet[k]=tmp;

    //按极角从小到大,距离偏短进行排序
    for (i=1;i<n-1;i++)
    {
        k=i;
        for (j=i+1;j<n;j++)
            if( (multiply(PointSet[j],PointSet[k],PointSet[0])>0)
                ||((multiply(PointSet[j],PointSet[k],PointSet[0])==0)
                    &&(dis(PointSet[0],PointSet[j])<dis(PointSet[0],PointSet[k]))) )
                k=j;//k保存极角最小的那个点,或者相同距离原点最近
        tmp=PointSet[i];
        PointSet[i]=PointSet[k];
        PointSet[k]=tmp;
    }
    //第三个点先入栈
    ch[0]=PointSet[0];
    ch[1]=PointSet[1];
    ch[2]=PointSet[2];
    //判断与其余所有点的关系
    for (i=3;i<n;i++)
    {
        //不满足向左转的关系,栈顶元素出栈
        while(multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;
        //当前点与栈内所有点满足向左关系,因此入栈.
        ch[++top]=PointSet[i];
    }
    len=top+1;
}

const int maxN=1010;
Point PointSet[maxN];
Point ch[maxN];
int n;
int len;

int main()
{
    double ans=0;
    int d;
    cin>>n>>d;
    for(int i=0;i<n;i++)
        cin>>PointSet[i].x>>PointSet[i].y;//input the data;
    Graham_scan(PointSet,ch,n,len);
    for(int i=0;i<len;i++)
        ans+=dis(ch[i],ch[(i+1)%len]);
    ans+=2*d*acos(-1.0); //等价于圆形周长
    cout<<(int)(ans+0.5)<<endl; //四舍五入
    return 0;
}

你可能感兴趣的:(算法,J#)