Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1894 Accepted Submission(s): 979
Problem Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains '0' and '1' , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
Output
For each data set, output all lights' state at m seconds in one line. It only contains character '0' and '1.
Sample Input
1
0101111
10
100000001
Sample Output
1111000
001000010
题意:
给出 m (1 ~ 10 ^ 8),代表有 m 秒钟,后给出 n(1 ~ 100) 个灯的开关状态(环)。每一秒钟如果该灯的左边灯是 1 的话,则改变自身灯的状态,输出当过了 m 秒后灯的状态。
思路:
矩阵快速幂。设 a,b,c 三盏灯:
ai+1 = (ci + ai)% 2;
bi+1 = (ai + bi)% 2;
ci+1 = (bi + ci)% 2;所以可以得到矩阵:
vector 中的 size 函数导致了 TLE, 每次循环求长度浪费了不少的时间,在已知的长度下就可以不用求了。
AC:
#include <cstdio> #include <cstring> #include <algorithm> #include <vector> using namespace std; typedef vector<int> vec; typedef vector<vec> mat; int len; mat mul (mat a, mat b) { mat c(len, vec(len)); for (int i = 0; i < len; ++i) { for (int j = 0; j < len; ++j) { for (int k = 0; k < len; ++k) { c[i][j] = (a[i][k] * b[k][j] + c[i][j]) % 2; } } } return c; } mat pow (mat a, int n) { mat b(len, vec(len)); for (int i = 0; i < len; ++i) { b[i][i] = 1; } while (n > 0) { if (n & 1) b = mul(b, a); a = mul(a, a); n >>= 1; } return b; } int main() { int n; char str[105]; while (~scanf("%d%s", &n, str)) { len = strlen(str); mat a(len, vec(len)); for (int i = 0; i < len; ++i) { if (!i) a[i][i] = a[i][len - 1] = 1; else a[i][i] = a[i][i - 1] = 1; } a = pow(a, n); for (int i = 0; i < len; ++i) { int res = 0; for (int j = 0; j < len; ++j) { res ^= (a[i][j] & (str[j] - '0')); } printf("%d", res); } printf("\n"); } return 0; }