- Spring 基础框架-- Ruoyi 权限管理架构详解
dazhong2012
开源项目springclouldspringbootspring架构java
一、权限管理整体架构若依的权限管理架构基于用户-角色-权限的RBAC模型,并扩展了数据权限控制。核心架构可分为以下四层:数据范围控制用户层角色层权限层数据过滤层菜单/按钮/接口权限角色关联部门/数据范围二、核心模块详解1.基础权限模型(RBAC)用户(sys_user):通过dept_id关联部门表,支持多角色分配角色(sys_role):data_scope字段定义数据权限范围(1-全部,2-自
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- KV 缓存简介
dev.null
AI缓存
以下是关于KV缓存(Key-ValueCache)的简介,涵盖其定义、原理、作用及优化意义:1.什么是KV缓存?KV缓存是Transformer架构(如GPT、LLaMA等大模型)在自回归生成任务(如文本生成)中,用于加速推理过程的核心技术。其本质是:在生成序列时,缓存历史token的Key和Value矩阵,避免重复计算,从而显著减少计算量。2.为什么需要KV缓存?传统自注意力计算的问题在生成第t
- 【论文精读】SCINet-基于降采样和交互学习的时序卷积模型
打酱油的葫芦娃
时序预测算法时序预测SCINetTCN
《SCINet:TimeSeriesModelingandForecastingwithSampleConvolutionandInteraction》的作者团队来自香港中文大学,发表在NeurIPS2022会议上。动机该论文的出发点是观察到时间序列数据具有独特的属性:即使在将时间序列下采样成两个子序列后,时间关系(例如数据的趋势和季节性成分)也基本上得以保留。这个观察启发了作者去设计一种新型的神
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- 迁移学习基础知识
zhooooooou
深度学习迁移学习人工智能机器学习
简介使用迁移学习的优势:1、能够快速的训练出一个理想的结果2、当数据集较小时也能训练出理想的效果。注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。原理:对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。常见的迁移学习的方式:1、载入权重后训练所有参数
- AUTOSAR与arxml的文档解析
dont__cry
c语言autosar
如下是文档脑图一、文档概述该文档是AUTOSAR经典平台的应用接口用户指南,主要解释**AlTable(应用接口表)**的结构、方法论及相关技术细节,帮助开发者理解如何通过标准化接口实现软件组件的互操作性。关键内容目的:定义并发布稳定、广泛接受的汽车电子系统应用接口,支持跨厂商软件组件的通信。结构:包含元模型表示、兼容性管理、生命周期状态、视图概念及XML生成规则等。二、核心概念与示例1.AUTO
- 迁移学习入门
EmbodiedTech
人工智能大模型迁移学习人工智能机器学习
迁移学习1迁移学习的概念预训练模型定义:简单来说别人训练好的模型。一般预训练模型具备复杂的网络模型结构;一般是在大量的语料下训练完成的预训练语言模型的类别现在我们接触到的预训练语言模型,基本上都是基于transformer这个模型迭代而来的因此划分模型类别的时候,以transformer架构来划分:Encoder-Only:只有编码器部分的模型,代表:BERTDecoder-Only:只要解码器部
- 通用具身智能机器人首次进厂造芯!
量子位
在全球半导体产业竞争日益激烈的背景下,半导体生产在部分高度依赖人力的生产环节,传统的智能化生产模式仍暴露出效率瓶颈与污染问题。人工操作易导致污染,且效率不高、污染控制难度大。如今,随着通用智能机器人的应用,这一难题正迎来全新解决方案。3月18日,国内领先的具身智能机器人公司智平方与全球知名科技创新企业吉利科技集团旗下浙江晶能微电子有限公司正式签署战略合作协议。双方将基于智平方自研的端到端具身大模型
- HarmonyNext实战:基于ArkTS的高性能数据流处理系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能数据流处理系统开发引言在HarmonyNext生态系统中,数据流处理是一个关键的技术领域。本文将深入探讨如何使用ArkTS构建一个高性能的数据流处理系统,重点讲解流式数据处理、并发模型、内存管理以及性能优化等高级主题。我们将通过一个实际的案例——实时日志分析系统,来展示如何将这些技术应用到实际工程中。系统架构设计我们的实时日志分析系统需要处理来自多
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- 复旦:LLM不同层位置编码缩放
大模型任我行
大模型-结构原理人工智能自然语言处理语言模型论文笔记
标题:Layer-SpecificScalingofPositionalEncodingsforSuperiorLong-ContextModeling来源:arXiv,2503.04355摘要尽管大型语言模型(LLM)在处理长上下文输入方面取得了重大进展,但它们仍然存在“中间丢失”问题,即上下文中间的关键信息往往不足或丢失。我们广泛的实验表明,这个问题可能源于旋转位置嵌入(RoPE)的快速长期衰
- 什么是机器视觉3D引导大模型
视觉人机器视觉
机器视觉3D3d数码相机机器人人工智能大数据
机器视觉3D引导大模型是结合深度学习、多模态数据融合与三维感知技术的智能化解决方案,旨在提升工业自动化、医疗、物流等领域的操作精度与效率。以下从技术架构、行业应用、挑战与未来趋势等方面综合分析:一、技术架构与核心原理多模态数据融合与深度学习3D视觉引导大模型通常整合RGB图像、点云数据、深度信息等多模态输入,通过深度学习算法(如卷积神经网络、Transformer)进行特征提取与融合。例如,油田机
- Python的ORM框架SQLAlchemy入门教程
searchwang
SQLAlchemy是python操作数据库的一个库。能够进行orm映射,SQLAlchemy“采用简单的Python语言,为高效和高性能的数据库访问设计,实现了完整的企业级持久模型”SQLAlchemy的理念是,SQL数据库的量级和性能重要于对象集合;而对象集合的抽象又重要于表和行。一安装SQLAlchemy复制代码代码如下:pipinstallsqlalchemy导入如果没有报错则安装成功复制
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- Linux 权限详解(带实战案例)
可问 可问春风
Linux从新手到入门linux运维服务器
Linux权限是系统安全的核心机制,本文通过权限模型分解+20个实战案例,带你彻底掌握文件权限的控制逻辑。一、Linux权限基础模型权限三要素:user(u):文件所有者group(g):所属用户组others(o):其他用户权限类型:r(read)读权限→4w(write)写权限→2x(execute)执行权限→1二、查看文件权限#查看详细信息(第一个字符为文件类型,后续9个字符为权限)$ls-
- 祛魅 Manus ,从 0 到 1 开源实现
易迟
人工智能Agent大模型Manus
背景介绍Manus是最近一个现象级的大模型Agent工具,自从发布以来,被传出各种神乎其神的故事,自媒体又开始炒作人类大量失业的鬼故事,Manus体验码也被炒作为10w的高价。之后又出现反转,被爆出实际体验效果不佳,存在造假的问题,Manus在X平台的账号被冻结。沟通之后,3月8日,Manus官方X账号又被解冻。Manus的故事一波三折,开源社区也没有闲着,MetaGPT团队在Manus发布后3小
- OpenManus 代码分析
有个人神神叨叨
人工智能ai
项目分析:OpenManus这是github地址OpenManus是一个基于LLM(大型语言模型)的智能代理系统,它采用了模块化的设计,支持工具调用、规划和执行等功能。下面我将通过时序图和流程图来详细分析整个系统的工作流程。系统架构OpenManus采用了分层架构设计,主要包括以下几个核心组件:Agent层:实现了不同类型的智能代理,包括基础代理(BaseAgent)、ReAct代理(ReActA
- Go语言的默认参数
俞嫦曦
包罗万象golang开发语言后端
Go语言的默认参数探讨Go语言是一种简洁、高效且强类型的编程语言,凭借其优雅的语法和高并发处理能力,赢得了广泛的开发者青睐。在讨论Go语言的设计时,常常会提到它的一些特性,比如优雅的并发模型、强大的标准库以及易于部署等。然而,在功能丰富的编程语言中,一个常见的特性是在函数中使用默认参数。然而,Go语言的设计原则使得它并没有提供默认参数的直接支持。本文将深入探讨Go语言中的默认参数问题,分析其背后的
- rstudio检验多重共线性代码
十三木
机器学习人工智能
在Rstudio中,你可以使用vif()函数来检验多重共线性。例如,假设你已经建立了一个线性回归模型,并将它保存在一个变量model中。你可以使用如下代码来检验多重共线性:library(car)vif(model)这会返回每个自变量的方差膨胀因子(VIF),如果VIF较大(通常超过5或10),则可能存在多重共线性。你可以使用这些信息来确定是否需要删除某些自变量或使用其他方法来处理多重共线性。
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 大型语言模型:让Python更聪明的秘密武器
qq_39605374
语言模型python数据库Python
Python是一种广泛使用的编程语言,而大型语言模型则为Python开发者提供了一个强大的工具。大型语言模型可以理解人类语言,并生成具有逻辑和连贯性的文本。它能够回答用户的问题、提供解决方案,并帮助开发者提高他们的编程技能。让我们来探索一下如何使用大型语言模型作为Python编程的秘密武器。大型语言模型可以通过使用Python编写的API进行访问。下面是一个简单的示例,演示了如何使用Python与
- Python 数据分析实战:电动汽车行业发展态势与市场策略洞察
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1市场规模与增长趋势2.4.2消费者需求分析2.4.3企业竞争格局2.4.4政策影响分析2.4.5构建消费者购买意愿预测模型三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-缺失值处理3.3数据清洗-异常值处理3.4数据分析-消费者需求分析3.5数据分析-构建消费者购买意愿预测模型四、可
- Git 分支使用规范全解(附项目示例)
滴答滴答滴嗒滴
开发Ai入门指南gitelasticsearch大数据个人开发
Git分支使用规范全解(附项目示例)本文结合实际项目开发,详细讲解如何在多人协作中使用Git分支,包括main、develop、feature/*、bugfix/*、release/*、hotfix/*等分支类型。场景背景:开发一个“智能垃圾分类系统”目标是开发一套运行于边缘设备上的垃圾识别系统,使用AI算法模型识别投放物,并分类投放,同时配有后台管理页面。分支说明与实际应用示例main分支(生产
- GPT-4o mini小型模型具备卓越的文本智能和多模态推理能力
FlowUs息流使用宝典
GPT-4omini
GPT-4omini是首个应用OpenAI指令层次结构方法的模型,这有助于增强模型抵抗越狱、提示注入和系统提示提取的能力。这使得模型的响应更加可靠,并有助于在大规模应用中更安全地使用。GPT-4omini在学术基准测试中,无论是在文本智能还是多模态推理方面,都超越了GPT-3.5Turbo和其他小型模型,并支持与GPT-4o相同的语言范围。它在函数调用方面也表现出色,这使开发者能够构建应用程序来从
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- JAVA:网络编程 Socket 的技术指南
拾荒的小海螺
JAVAjava网络开发语言
1、简述JavaNIO(Non-blockingI/O)是一种基于通道(Channel)和缓冲区(Buffer)的I/O模型,支持非阻塞通信和多路复用,适合高并发场景。相比传统的阻塞I/O(BIO),NIO更高效,因为它避免了线程被阻塞,降低了系统资源消耗。代码样例:https://gitee.com/lhdxhl/springboot-example.git核心组件:Channel(通道):数据
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- MNIST数据集&手写数字识别
Zoro|
kerastensorflow人工智能机器学习
TensorFlow是一个开源的机器学习框架,由Google开发并发布。它提供了一种基于数据流图的编程模型,用于构建和训练机器学习模型。TensorFlow的核心概念是张量(Tensor)和流图(Graph)。张量是TensorFlow中的基本数据单位,可以理解为多维数组,可以是标量、向量、矩阵或更高维度的数组。流图是由一系列操作(Operation)和张量组成的。操作定义了计算和转换张量的方式。
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
yyds_2201
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1