母函数

1、幂级数

在数学中,幂级数是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为:

其中的c和是常数。称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。

如果把 看成一项,那么幂级数可以化简为的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。

将一个函数写成幂级数 的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。

幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源[1]。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为。在p-进数中则可以见到x被固定为的幂级数。

 

 

多项式可以看做系数从某一项开始全是零的幂级数,例如多项式 可以写成标准形式的幂级数:

也可以写成():

实际上,多项式可以写成在任意c附近展开的幂级数。就这个意义上说,幂级数是多项式的推广。

等比级数的公式给出了对,有

是幂级数中基本而又重要的一类。同样重要的还有指数的幂级数展开:

以及正弦函数(对所有实数x 成立):

这些幂级数都属于泰勒级数。

幂级数里不包括负的幂次。例如 就不是幂级数(它是一个劳伦级数)。同样的,幂次为分数的级数也不是幂级数。系数必须是和x无关,比如就不是一个幂级数。

 

2、母函数

在数学中,某个序列 的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法

母函数可分为很多种,包括普通母函数指数母函数L级数贝尔级数狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。

母函数的表示一般使用解析形式,即写成关于某个形式变量x的形式幂级数。对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x的值都存在。

母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。

你可能感兴趣的:(函数)