- 【大模型开发】Hugging Face的Transformers库详解介绍与案例
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习transformerhuggingface大模型技术大模型开发deepseek机器学习深度学习
深入解析HuggingFaceTransformers及开源大模型微调实践HuggingFaceTransformers已成为自然语言处理(NLP)乃至多模态(跨语言、图像、音频等)应用中最为流行、功能最完备的开源框架之一。它将主流的预训练模型(如BERT、GPT、T5、VisionTransformer等)统一整合在同一套API下,并提供了丰富的工具支持快速训练、推理与部署。本篇文章将:介绍Hu
- 基于 GQA 与 MoE 的古诗词生成模型优化 llm项目以及对应八股
许愿与你永世安宁
自用大模型八股rnnnlpberttransformer人工智能深度学习word2vec
目录项目项目背景个人贡献成果产出词嵌入Word2Vec两种训练方式:两种加速训练的方法:GloVe(GlobalVectorsforWordRepresentation)FastTextMHA、GQA、MLApromptengineering位置编码正余弦编码(三角式)可学习位置编码(训练式)经典相对位置编码T5相对位置编码RotaryPositionEmbedding(RoPE)attentio
- 大模型模型推理的成本过高,如何进行量化或蒸馏优化
大模型大数据攻城狮
大模型量化知识蒸馏python面试BERT量化感知prompt
在人工智能的浪潮中,大模型已经成为推动技术革新的核心引擎。从自然语言处理到图像生成,再到复杂的多模态任务,像GPT、BERT、T5这样的庞大模型展现出了惊人的能力。它们在翻译、对话系统、内容生成等领域大放异彩,甚至在医疗、金融等行业中也开始扮演重要角色。可以说,这些模型正在重塑我们对智能的理解,也为无数应用场景注入了新的可能性。然而,伴随着强大性能而来的,是令人咋舌的推理成本。想象一下,运行一个拥
- T5和GPT哪个更强大
Ash Butterfield
自然语言处理(NLP)专栏gpt
一图速览:T5vsGPT对比总结维度T5(Text-to-TextTransferTransformer)GPT(GenerativePretrainedTransformer)模型类型编码器-解码器(Encoder-Decoder)解码器-only(Decoder-only)训练目标将一切任务转化为“文本到文本”的转换问题(如翻译、摘要、QA)语言建模(预测下一个token)设计理念通用统一框架
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- Transformer大模型实战 针对下游任务进行微调
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
Transformer,微调,下游任务,自然语言处理,预训练模型,迁移学习,计算机视觉1.背景介绍近年来,深度学习在人工智能领域取得了突破性进展,其中Transformer模型凭借其强大的序列建模能力,在自然语言处理(NLP)领域取得了显著成就。BERT、GPT、T5等基于Transformer的预训练模型,在文本分类、机器翻译、问答系统等任务上展现出令人惊叹的性能。然而,这些预训练模型通常在大型
- 【蓝桥杯真题精讲】第 16 届 Python A 组(省赛)
Mr_Dwj
数据结构与算法蓝桥杯python
文章目录T1偏蓝(5'/5')T2IPv6(0'/5')T32025图形(10'/10')T4最大数字(10'/10')T5倒水(15'/15')T6拼好数(0'/15')T7登山(20'/20')T8原料采购(20'/20')更好的阅读体验:https://wiki.dwj601.cn/ds-and-algo/lan-qiao-cup/16th-python-a/官方还没有开放评测,洛谷开放了全
- 【NLP】34. 数据专题:如何打造高质量训练数据集
pen-ai
机器学习深度学习自然语言处理人工智能
构建大语言模型的秘密武器:如何打造高质量训练数据集?在大语言模型(LLM)如GPT、BERT、T5爆发式发展的背后,我们常常关注模型架构的演化,却忽视了一个更基础也更关键的问题:训练数据从哪里来?这些数据是如何清洗、筛选和标注的?本篇博客将系统梳理LLM数据构建中的核心流程,以FineWeb为例,揭示如何打造一个有规模、有质量、无偏见的训练语料,并讨论相关的伦理与公平性问题。一、构建语料第一步:F
- GPT 经验
AI Echoes
gpt
GPT经验篇一、gpt源码past_key_value是干啥的?二、gptonebyone每一层怎么输入输出?三、bert和gpt有什么区别四、文本生成的几大预训练任务?五、讲讲T5和Bart的区别,讲讲bart的DAE任务?六、讲讲Bart和Bert的区别?七、gpt3和gpt2的区别?致谢一、gpt源码past_key_value是干啥的?在GPT(GenerativePre-trainedT
- java spring mvc与struts 效率_对于Struts和Spring两种MVC框架的比较
定乎内外之分
javaspringmvc与struts效率
1引言基于Web的MVCframework在J2EE的世界内已是空前繁荣。TTS网站上几乎每隔一两个星期就会有新的MVC框架发布。目前比较好的MVC,老牌的有Struts,Webwork。新兴的MVC框架有SpringMVC,Tapestry,JSF等。这些大多是著名团队的作品,另外还有一些边缘团队的作品,也相当出色,如Dinamica,VRaptor等。这些框架都提供了较好的层次分隔能力。在实现
- Python Transformer 库及使用方法
学亮编程手记
Pythonchatgptpythontransformer开发语言
Python中的Transformer库及使用方法一、库的概述HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模型(如BERT、GPT、T5等),覆盖文本、图像、音频等多模态任务。其核心功能包括:预训练模型:支持数百种模型,适配文本分类、生成、翻译、问答等任务。分词与工具链:提供高效的分词器(Tokenizer
- 常见的encoder decoder架构有哪些
强化学习曾小健
架构
答案常见的Encoder-Decoder架构包括以下几种:T5(Text-to-TextTransferTransformer):将所有自然语言处理任务转化为文本到文本的形式,适用于多种任务,如翻译、摘要和问答。BART(BidirectionalandAuto-RegressiveTransformers):结合了自回归和双向编码的优点,适用于文本生成和理解任务。Seq2Seq:经典的序列到序列
- Transformer理解
慢慢变
transformer深度学习人工智能
Transformer是一种基于自注意力机制(Self-Attention)的深度学习模型架构,由Vaswani等人在2017年的论文《AttentionIsAllYouNeed》中首次提出。它在自然语言处理(NLP)领域取得了革命性的成功,成为许多先进模型(如BERT、GPT系列、T5等)的基础架构。以下是对Transformer的详细理解:1.Transformer的核心概念2.解码器(Dec
- HarmonyOS应用开发者高级试题006
code36
harmonyos
一、判断题1、用户首选项是关系型数据库。F2、使用http模块发起网络请求时,必须要使用on"headersReceive")订阅请求头,请求才会成功。F3、一个应用是由一个或多个HAP组成。T4、开发者将应用上架应用市场后,终端设备用户可以在终端设备上使用应用市场进行应用的安装和卸载。T5、预览器支持对页面的预览,如果代码中涉及到一些网络、数据库、传感器等功能的开发,则可以使用模拟器或者真机进行
- 基于Hugging Face的Transformer实战
小诸葛IT课堂
transformer深度学习人工智能
一、为什么选择HuggingFace?HuggingFace生态提供:30,000+预训练模型(BERT、GPT、T5等)统一的TransformerAPI接口快速实现下游任务迁移企业级部署工具(Optimum、InferenceEndpoints)二、文本分类实战:IMDB影评情感分析1.环境安装与数据准备pipinstalltransformersdatasetsevaluateacc
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
m0_74825656
面试学习路线阿里巴巴transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- Adapter-Tuning:高效适配预训练模型的新任务
花千树-010
TuningpromptembeddingAIGC机器学习chatgptpytorch
1.引言近年来,预训练语言模型(PLM)如BERT、GPT和T5在自然语言处理(NLP)任务中取得了巨大成功。然而,Fine-Tuning这些大型模型通常需要大量计算资源,并且每个新任务都需要存储一套完整的微调权重,这导致存储成本高昂。Adapter-Tuning作为一种高效的模型调优方法,允许我们在预训练模型的基础上,通过引入轻量级“Adapter”层来进行任务特定的学习。Adapter层只占用
- 【Hugging Face】transformers 库中 model.generate() 方法:自回归模型的文本生成方法
彬彬侠
HuggingFacemodel.generatetransformersHuggingFace文本生成自回归模型GPTLLAMA
HuggingFacemodel.generate方法model.generate是transformers库中的文本生成(TextGeneration)方法,适用于自回归模型(如GPT-2、T5、BART、LLAMA),用于生成文本、摘要、翻译、问答等。1.适用于哪些模型?generate适用于基于Transformer生成文本的模型,例如:GPT-2(AutoModelForCausalLM)
- 【大模型】大模型分类
IT古董
人工智能人工智能大模型
大模型(LargeModels)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:1.按应用领域分类自然语言处理(NLP)模型如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。计算机视觉(CV)模型如ResNet、EfficientNet、VisionTransformer(ViT)等,用于图
- 全方位解析:大语言模型评测方法的综合指南
大模型玩家
语言模型人工智能自然语言处理深度学习agi大模型搜索引擎
自2017年Transformer模型提出以来,自然语言处理研究逐步转向基于该框架的预训练模型,如BERT、GPT、BART和T5等。这些预训练模型与下游任务适配后,持续刷新最优结果。然而,现有评测方法存在广度和深度不足、数据偏差、忽视模型其他能力或属性评估等问题。因此,需要全面评测和深入研究模型的各项能力、属性、应用局限性、潜在风险及其可控性等。本文回顾了自然语言处理中的评测基准与指标,将大语言
- ST电机库电流采样:单电阻
Easy·C 麦克法兰
ST电机库单片机嵌入式硬件
一、概述单电阻电流采样的硬件结构如下图:图中可以看出,对于低侧MOS,有下图几种配置(T1、T2、T3分别与T4、T5、T6互补;0表示MOS打开,1表示MOS关闭):使用中心对齐模式,七段SVPWM分段如下图所示,:可知在I、IV、VII分段中,通过ShuntResister的电流为0;而在其他分段中,通过ShuntResister的电流相对于PWM的中心是对称的,由此可以分成两组:1、分段II
- RAG+LLM和直接将整理的知识训练到模型中去有什么区别,各自有什么优缺点
MonkeyKing.sun
RAG+LLM训练模型
1.RAG(Retrieval-AugmentedGeneration)+LLM(LargeLanguageModel)概念RAG是将信息检索与生成模型相结合的一种方法。具体来说,RAG会从一个知识库(如数据库、文档库、向量数据库等)中检索相关的信息片段或条目,然后将这些信息与输入的查询一起传递给一个生成模型(如GPT、T5、BERT等)进行回答生成。这个过程通常包括以下步骤:检索:从一个知识库中
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 【人工智能领域优质书籍】实战AI大模型
秋说
赠书活动AI大模型
【文末送书】今天推荐一本人工智能领域好书《实战AI大模型》文章目录导语书籍亮点初学者必备文末送书导语人工智能领域资深专家尤洋老师倾力打造,获得了李开复、周鸿祎、颜水成三位大咖鼎力推荐,一经上市就登上了京东“计算机与互联网”图书排行榜Top1的宝座。书籍亮点1.全面Al知识结构:从基础理论到最前沿的实践应用,全面覆盖了’Al大模型领域,包括Transformer模型、BERT、ALBERT、T5、G
- T5模型-基于Transformer架构的通用文本到文本转换模型
Jiang_Immortals
人工智能pythontransformer深度学习人工智能
T5(Text-to-TextTransferTransformer)是由Google于2019年提出的一种基于Transformer架构的通用文本到文本转换模型。T5模型通过在大规模数据集上进行预训练,并使用迁移学习的方式在各种自然语言处理任务上取得了出色的性能。它的设计理念是将所有NLP任务都转化为文本到文本的形式,包括文本分类、序列标注、机器翻译等等。通过预训练和微调,T5模型可以用于广泛的
- 小白的靶机-VulnHub-Lampiao
每天都要努力哇
小白的靶机
靶机地址,看这里一、信息收集我们在VM中需要确定攻击目标的IP地址,需要使用nmap获取目标IP地址:关于nmap的入门操作nmap-sP192.168.86.0/24或者使用netdiscover获取目标IP地址我们就拿到了这次靶机的IP地址:192.168.86.160开始探索机器。第一步是找出目标计算机上可用的开放端口和一些服务。因此我在目标计算机上启动了nmap全端口T5速度扫描:nmap
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的