- v0.24.0 新特性支持标签分类,内置实现多种策略
后端java
开源项目敏感词核心https://github.com/houbb/sensitive-word敏感词控台https://github.com/houbb/sensitive-word-admin版本特性大家好,我是老马。敏感词标签分类一直是大家比较想要的一个功能特性,v0.24.0了开始内置支持标签分类,同时实现了多种策略。快速开始maven引入com.github.houbbsensitive
- 【数据结构】—— 顺序表的实现与优化:空间管理与增容策略
酷酷的崽798
数据结构数据结构c语言
文章目录顺序表的基本概念与结构顺序表的分类静态顺序表动态顺序表顺序表问题与思考插入与删除的时间复杂度增容的开销如何解决空间浪费问题?顺序表作为一种常见的线性数据结构,广泛应用于各种编程任务中。它通过连续的物理内存存储数据元素,提供了高效的随机访问功能。在这篇博客中,我们将深入探讨顺序表的结构、分类、实现方法以及它的一些问题与优化策略,尤其是如何解决空间浪费和增容问题。顺序表的基本概念与结构顺序表(
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- MySQL无限极分类表设计:实战项目中的高效解决方案
MissYou-Coding
mysql数据库
在许多实战项目中,如电商系统、内容管理系统等,我们常常需要处理具有层级关系的数据,例如商品分类、文章栏目等。这些数据通常呈现出无限极分类的特点,即一个分类下可以有多个子分类,子分类下又可以有更深层次的子分类,层级关系复杂且不固定。下面将介绍一种适用于MySQL数据库的无限极分类表设计,并对其设计思路、优缺点进行详细分析,希望能为同行们提供一些有价值的参考。表结构设计我们设计的无限极分类表名为cat
- 密码体制分类
旧火车
现代密码学密码学
密码体制从原理上可分为两大类,即单钥体制和双钥体制。1.单钥体制单钥体制的加密密钥和解密密钥相同。系统的保密性取决于密钥的安全性,与算法的保密性无关,即由密文和加密算法不能得到明文。换句话说,算法无须保密,需保密的仅是密钥。根据单钥密码体制的这种特性,单钥加解密算法可通过低费用的芯片来实现。密钥可由发方产生,然后再经一个安全可靠的途径(如信使递送)送至收方,或由第三方产生后安全可靠地分配给通信双方
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- JAVA的成员变量和局部变量(详解)
万能的柯西
javaSEjavajvm开发语言
目录成员变量与局部变量的分类实例变量与类变量的区别三种局部变量的区别成员变量与局部变量的区别变量同名问题变量的使用规则何时使用成员变量JAVA的变量可以分为两大类:成员变量和局部变量。成员变量与局部变量的分类具体细分,成员变量可以分为两类:实例变量和类变量。局部变量可以分为三类:形参、方法局部变量和代码块局部变量。如下图所示:实例变量与类变量的区别这两种变量很好区别,与某个实例(对象)有关的成员变
- java--成员变量和局部变量
李自桐
javajvmc++
变量的分类Java语言中若变量按声明的位置分类,可以分为:成员变量、局部变量,而成员变量又分为:实例变量、静态变量。实例变量是指不使用static修饰的变量,静态变量是指使用static修饰的变量。局部变量包括:方法内声明的变量、方法的形参、构造器的形参、代码块内声明的变量。成员变量成员变量:如果一个变量定义的位置在方法的外部,在类的内部,此时该变量被称为成员变量。成员变量不是必须要赋值,成员变量
- 数据增强方法及其工具
cxr828
大数据
数据增强(DataAugmentation)是指在训练深度学习模型时,通过对现有数据进行一系列变换,从而生成新的样本。数据增强有助于增加数据的多样性,减少过拟合,提升模型的泛化能力,尤其是在数据量有限的情况下。数据增强可以应用于图像、文本、音频等多种类型的数据。以下是一些常见的、简单易行的图像数据增强方法及其具体实现步骤,这些方法也可以广泛应用于目标检测、图像分类、图像分割等任务。一、图像数据增强
- 什么是FPGA开发?
博览鸿蒙
FPGAfpga开发
FPGA(Field-ProgrammableGateArray),即现场可编程门阵列,是一种通过编程方式实现特定功能的集成电路。与传统的ASIC(专用集成电路)相比,FPGA具有灵活性高、开发周期短、成本相对较低等优势,因此在通信、数据中心、汽车、工业控制等领域得到广泛应用。如果按照应用场景给FPGA应用分类,可以分为高速接口、数据处理、逻辑控制等,在实际工作中也可以根据这些方向进行求职。虽然不
- 一文帮你搞懂flink中窗口的分类(一)
知否&知否
flink中窗口及其函数分类flink大数据
Window可以分成两类:CountWindow:按照指定的数据条数生成一个Window,与时间无关。滚动计数窗口,每隔N条数据,统计前N条数据滑动计数窗口,每隔N条数据,统计前M条数据TimeWindow:按照时间生成Window。(重点)滚动时间窗口,每隔N时间,统计前N时间范围内的数据,窗口长度N,滑动距离N滑动时间窗口,每隔N时间,统计前M时间范围内的数据,窗口长度M,滑动距离N还有一种特
- 网络安全拟态防御技术
网安墨雨
web安全安全网络
一.拟态防御拟态现象(MimicPhenomenon,MP)是指一种生物如果能够在色彩、纹理和形状等特征上模拟另一种生物或环境,从而使一方或双方受益的生态适应现象。按防御行为分类可将其列入基于内生机理的主动防御范畴,又可称之为拟态伪装(MimicGuise,MG)。如果这种伪装不仅限于色彩、纹理和形状上,而且在行为和形态上也能模拟另一种生物或环境的拟态伪装,我们称之为“拟态防御”(MimicDef
- 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络深度学习cnn分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
- 程序代码篇---C&Python作用域
Ronin-Lotus
程序代码篇c语言python
文章目录前言第一部分:堆&栈1.堆区&栈区的区别2.堆存储&栈存储的优点3.全局/静态存储区4.代码区第二部分:C语言的作用域1.作用域分类(1).在所有函数之外的全局变量(2).在函数内或者块内的局部变量(3).作为函数参数的形式参数2.数据初始化第三部分:Python作用域1.作用域的分类2.不同作用域的特点总结前言本章首先介绍了内存中的栈&堆,进而介绍了C语言&Python的作用域第一部分:
- 单层感知机----或门实现
翔翔子1号
文章目录一、前言---感知机二、实现过程1.引入库2.或门真值表-训练集数据3.建立model,初始化定义权重、偏置、学习率4.前向传播定义5.训练过程(更新权重和偏置)6.训练模型一、前言—感知机感知机(Perceptron)模型是由美国心理学家弗兰克罗森布拉特于1957年提出的一种具有单层计算单元的神经网络。这个模型旨在建立一个线性超平面来解决线性可分问题,就如我们现在的或门分类。二、实现过程
- 隐私计算实训营 第三讲:隐私计算框架及架构
weixin_39707995
sql
目前世面上没有绝对优势的技术路线,所以隐语从完备性,开放性,独立性这3个角度考虑方案1.产品层产品定位:通过交互友好的可视化页面,降低终端用户使用成本通过模块化API降低技术集成商的研发成本所以根据产品定位,隐语产品类型分为白屏产品(定位1)和黑屏产品(定位2)黑屏产品:secretflow、库的形式2.算法层层级分类产品名称简介使用方式算法层隐私计算算法PSI隐私求教白屏:可视化功能黑屏:sec
- PCL 基于法线微分(DoN)的点云分割【2025最新版】
点云侠
PCL学习算法可视化聚类c++开发语言计算机视觉3d
法线微分一、算法原理1、DoN定义2、DoN算法3、DoN分割步骤4、参考文献5、论文描述二、代码实现三、结果展示1、法线可视化结果2、对应曲率信息可视化3、利用曲率分类结果可视化4、欧式聚类分割结果本文由CSDN点云侠原创,原文链接,首发于:2020年07月27日。抄袭狗把自己当个狗加油抄,抄袭狗抄哪一篇进自己的付费专栏,我就哪一篇永久免费开放。博客长期更新,本文最新更新时间为:2025年1月1
- PCL 计算点云的VFH特征
点云侠'
点云学习c++visualstudio开发语言算法3d
目录一、概述二、代码三、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,可放心复制粘贴。一、概述 VFH(ViewpointFeatureHistogram)特征是一种三维点云描述子,它结合了点云的局部几何信息和视点信息,以提高物体识别和分类的精度。VFH特征通过计算每个点云的法向量分布,生成一个308维的特征直方图,用于表示该点云的形状特征。
- day11备份与恢复
Long韵韵
MySQL学习adbandroidoracle
MySQL备份介绍文章目录MySQL备份介绍1.DBA备份与恢复职责2.MySQL备份工具分类mysqldump逻辑备份1.介绍2.重要参数3.备份命令4.分库分表备份5.故障恢复演练5.1模拟环境5.2模拟周一23:00全备5.3模拟周二白天数据变化5.4模拟周二下午2点,误删除了核心库5.5恢复数据6.mysqldump多种备份策略和恢复策略6.1场景6.2备份策略Xtrabackup物理备份
- 智能化植物病害检测:使用深度学习与图像识别技术的应用
机器懒得学习
深度学习人工智能
植物病害一直是农业生产中亟待解决的问题,它不仅会影响作物的产量和质量,还可能威胁到生态环境的稳定。随着人工智能(AI)技术的快速发展,尤其是深度学习和图像识别技术的应用,智能化植物病害检测已经成为一种趋势,能够大幅提高病害检测的效率与准确性。本文将介绍如何使用深度学习和图像识别技术,通过Python编写的智能化病害检测程序,实现对植物叶片病害的自动识别与分类。1.项目背景与目标在农业领域,及时发现
- SpringAOP前置——代理模式
兜里ヌ有糖
代理模式java后端
代理模式是SpringAOP(面向切面编程)的底层原理代理模式的分类静态代理动态代理静态代理角色分析:抽象角色:一般使用抽象类或接口来解决代理角色:代理真实角色,在代理真实角色后,一般会做一些附属操作真实角色:被代理的角色客户:访问代理对象的角色,可以理解为一个处理事务的线程,多为一次业务处理以租房举例子进行理解房东有房子要出租,将房源信息告诉中介,也就是让中介代理房东进行房屋租赁这件事。房东是真
- springMVC文件上传和下载
xls丶
springmvc
[置顶]SpringMVC单文件上传、多文件上传、文件列表显示、文件下载标签:SpringMVC文件上传文件下载列表显示2015-05-1821:0122627人阅读评论(6)收藏举报分类:SpringMVC(8)作者同类文章X•Shrio登陆验证实例详细解读•Spring+Mybatis+SpringMVC后台与前台分页展示实例(附工程)•Spring+Mybatis+SpringMVC+Mav
- 神经网络初始化 (init) 介绍
迷路爸爸180
神经网络人工智能深度学习初始化init
文章目录引言1.初始化的重要性1.1打破对称性1.2控制方差1.3加速收敛与提高泛化能力2.常见的初始化方法及其应用场景2.1Xavier/Glorot初始化2.2He初始化2.3正交初始化2.4其他初始化方法3.如何设置初始化4.基于BERT的文本分类如何进行初始化4.1项目背景4.2模型构建4.3模型训练与评估4.4结果分析结论参考资料引言在深度学习的世界中,构建一个高效且性能优异的神经网络模
- ElasticSearch11-8.x 新特性
李宥小哥
常用中间件中间件
零、文章目录ElasticSearch11-8.x新特性1、API变更(1)类型(_type)移除在Elasticsearch8.x中,索引中的_type已经被完全移除。这意味着所有文档在同一个索引中将不再区分类型,简化了索引结构,但同时也要求开发者调整应用程序逻辑以适应这一变化。(2)客户端库更新Elasticsearch8.x不再支持rest-high-level-client,而是推荐使用新
- 设计模式简介
智想天开
设计模式技术文章设计模式
本文章为原创,禁止未经授权的转载。对应公众号地址:设计模式简介,更多内容请关注公众号:智想天开1.什么是设计模式?设计模式是一套被反复使用、多数人知晓的、经过分类编目的代码设计经验。它们不是具体的代码,而是解决特定类型问题的通用方案。设计模式旨在提供一种高效、可维护和可扩展的方式来构建软件系统。关键点:重用:通过使用设计模式,可以避免重复造轮子,提升开发效率。沟通:设计模式提供了标准化的术语,促进
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 我学会了整理房间
tailwind-css
讲述自己学会整理房间的过程。以前,我的房间总是乱糟糟的,书本、玩具、衣服到处乱扔。有一次,妈妈让我自己整理房间,我开始学着把书本放进书架,把玩具放进玩具箱,把衣服叠整齐放进衣柜。整理完后,房间变得整洁又舒适。通过整理房间,我学会了分类和收纳,也养成了良好的生活习惯。
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla