利用MapReduce的方式往固定表mock测试数据

场景:

       mysql有压力测试,会利用压测工具,mock一大批数据,但是hbase没有提供相应的功能,此时我们可以自己写一个mock工具,以满足我们的测试需求。

分析:

我们看下Mapper的源码:

public void run(Context context) throws IOException, InterruptedException {
	setup(context);
	while (context.nextKeyValue()) {
	map(context.getCurrentKey(), context.getCurrentValue(), context);
	}
	cleanup(context);
}

 我们发现如果打算让map多次执行,那么只需要在这边下功夫了

思路:

1.设置一个空的输入文件

2.通过context.getConfiguration().getLong()获取自己指定的long类型的参数

3.通过context.getConfiguration().get()获取要mock的表名,列如(E:E格式),值的产生方式支持number和string两种格式

4.覆盖mapper的run方法,循环执行指定的次数

简要代码如下:

Job:

private static void runJob() {
	String outputTableName = "A";
	Configuration conf = HBaseConfiguration.create();
	conf.set("hbase.master", XXX);
	conf.set("hbase.zookeeper.quorum", XXX);
	conf.set("hbase.cluster.distributed", "true");
	conf.set(TableOutputFormat.OUTPUT_TABLE, outputTableName);

	try {
		Job job = new Job(conf, "DataMockTask");
		FileSystem hdfs = FileSystem.get(conf);
		
		Path paths = new Path("./tmp/test");
		if (!hdfs.exists(paths)) {
			hdfs.create(paths);
			
		}
		FileInputFormat.setInputPaths(job, paths);
		job.setInputFormatClass(TextInputFormat.class);
		job.setJarByClass(DataMockTask.class);
		job.setMapOutputKeyClass(NullWritable.class);
		job.setMapOutputValueClass(Put.class);
		job.setMapperClass(DataMockMapper.class);
		job.setOutputFormatClass(TableOutputFormat.class);
		job.setNumReduceTasks(0);
		job.waitForCompletion(true);

	} catch (Throwable e) {
		throw new RuntimeException("Run DataFormatTask error! ", e);
	} finally {
		HConnectionManager.deleteConnection(conf, true);
	}

}

 Mapper:

@Override
public void run(Context context) throws IOException, InterruptedException {
	setup(context);
	long number = context.getConfiguration().getLong(HadoopConstants.DATA_NUM_KEY, 10000l);
	for (long i = 0; i < number; i++) {
		map(NullWritable.get(), NullWritable.get(), context);
	}
	
	cleanup(context);
}

@Override
protected void map(NullWritable key, NullWritable value, Context context) throws IOException,
	InterruptedException {
	String uid = UUID.randomUUID().toString();
	Put put = new Put(Bytes.toBytes(uid));
	put.add(Bytes.toBytes("E"), Bytes.toBytes("E"), Bytes.toBytes(System.currentTimeMillis()));
	context.write(NullWritable.get(), put);
}

 

你可能感兴趣的:(mapreduce)