- Flink Checkpoint机制详解
Ray.1998
大数据flink大数据开发语言sparkzookeeperkafkahive
在分布式流处理系统中,容错性和一致性是核心要求。ApacheFlink作为流处理的领先框架,提供了一种强大的机制来确保系统的容错性与数据的一致性,这就是Flink的Checkpoint机制。通过定期保存应用程序的状态快照,Flink能够在系统发生故障时迅速恢复到最近的一致状态,并且提供精确一次(exactly-once)的语义保证。本文将详细介绍Flink的Checkpoint机制,包括其触发方式
- SpringBoot-MyBatis-plus实体类中常用的注解
or77iu_N
MyBatisjavamybatisspringboot数据库
@TableName在Java类上通过添加@TableName注解并指定表名,ORM框架会将该类与指定的数据库表进行映射@TableId(type=IdType.AUTO)在实体类中,使用@TableId注解来标记主键字段。@TableField("xxx")当数据库中的字段名与实体类中的属性名不一致时,可以使用@TableField注解来指定数据库表中的字段名。@TableField(exist
- go-mongox:简单高效,让文档操作和 bson 数据构造更流畅
后端gomongodb开源
前言在Go语言中使用MongoDB官方框架进行集合操作时,深深感到构建bson数据是一件非常繁琐的工作。字段、逗号,括号等符号的排列,让我感觉仿佛是在进行一场拼图游戏。因此我在想,有没有一个能让我丝滑,高效操作MongoDB的第三方框架呢,遗憾的是,并没有找到符合我预期的框架,索性我就自己动手开发了一个,这就是go-mongox框架的由来。如果你也有类似我的这种感受,相信go-mongox框架能给
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- 业务线接入前端异常监控sentry
weixin_33711647
1.前端异常处理的框架对比是否开源收费语言监控范围sentry是自己搭建服务器(免费)价格英文Angular、AngularJs、Backbone、Ember、JavaScript、React、Vue......fundebug否收费(708一年,本地版:12万一年)中文Angular、AngularJs、Backbone、Ember、JavaScript、React、Vue、微信小程序等等...
- Selenium WebDriver自动化测试(框架篇)--操作Excel实现数据驱动
职说测试
seleniumexcel测试工具wei自动化测试UI自动化测试
文章目录一、引言二、操作Excel的准备工作2.1、添加ApachePOI依赖三、读取Excel文件实现数据驱动3.1、示例代码四、将测试结果写入Excel文件4.1、示例代码五、封装通用方法5.1、示例代码六、总结参考文献一、引言数据驱动测试是一种在自动化测试中广泛应用的方法,它允许使用外部数据源(如Excel文件)来提供测试数据。这种方法特别适合于需要大量不同输入数据的测试场景。Java版Se
- 使用 Apache Jena 构建 RDF 数据处理与查询服务
梦落青云
apache知识图谱人工智能
一、引言随着语义网和知识图谱技术的不断发展,RDF(ResourceDescriptionFramework)作为一种用于描述资源的框架,被广泛应用于知识表示和数据集成。ApacheJena是一个功能强大的Java框架,用于处理RDF数据和SPARQL查询。本文将通过一个示例项目,展示如何使用ApacheJena实现RDF数据的加载、查询、推理、插入和更新操作。二、项目概述本项目的目标是使用Apa
- Android14 Camera框架中Jpeg流buffer大小的计算
叶羽西
安卓android
背景描述Android13中,相机框架包含对AIDLCameraHAL的支持,在Android13或更高版本中添加的相机功能只能通过AIDLCameraHAL接口使用。对于Android应用层来说,使用API34即以后版本的Camera应用程序通过CameraAIDLInterface访问到HAL层。在将HAL层从HIDL相机接口迁移到AIDL相机接口时,发现AIDLHALJpegbuffer带下
- 自动化测试工具:Selenium
小俊学长
测试工具自动化selenium
Selenium作为一种广泛使用的自动化测试工具,尤其在Web自动化测试领域发挥着重要作用。为了提升测试效率、增强测试的可维护性和可读性,Selenium经常与各种流行框架集成,其中pytest和Allure报告是两个非常受欢迎的选项。本文将详细探讨Selenium与pytest以及Allure报告的集成,包括集成背景、优势、具体实现步骤以及在实际应用中的效果。一、集成背景1.Selenium简介
- 大模型知识蒸馏:技术突破与应用范式重构——从DeepSeek创新看AI基础设施演进路径
大模型服务器厂商
重构人工智能
一、知识蒸馏的技术哲学演进知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术突破,其发展轨迹折射出人工智能从"规模崇拜"向"效率优先"的范式转变。传统知识蒸馏框架主要关注概率分布层面的知识迁移,但DeepSeek等前沿项目展示出更复杂的知识萃取机制。最新研究表明,知识传递已从单纯的输出层模仿,发展到注意力模式迁移(AttentionTransfer)、隐层特征对齐(H
- 01 目录-具身智能学习规划
天机️灵韵
具身智能人工智能具身智能机器人生物信息学
具身智能(EmbodiedIntelligence)强调智能体通过身体与环境的动态交互实现学习和决策,是人工智能、机器人学、认知科学和神经科学交叉的前沿领域。其核心在于打破传统AI的“离身认知”,将智能与物理实体、感知-运动系统紧密结合。以下是具身智能学习规划的框架:一、基础理论储备数学与编程基础数学:概率统计、线性代数、微积分、优化理论、微分几何(运动规划)。编程:Python(主流工具链)、C
- DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)
一个处女座的程序猿
精选(人工智能)-中级深度学习人工智能tensorflow
DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)导读本人在Win10下安装深度学习框架Tensorflow,安装之前各种谷歌,各种百度,各种国内外资料,做了充分准备。目录安装思路1、tensorflow_gpu+Cuda+Cudnn版本匹配官方推荐2、先解释一下cuda与cudannDL之IDE:深度学
- netty详解
p-knowledge
jettyjava
Netty是一个高性能的网络通信框架,广泛用于构建网络应用程序,如高性能的服务器、客户端和分布式系统。以下是Netty的各个组件介绍与原理分析,以及客户端和服务端的实现示例。一、Netty的组件介绍Channel:概念:表示一个连接到网络的对象,负责处理网络I/O操作。可以是TCP、UDP等。作用:提供数据读写操作,并可以注册到事件循环。EventLoop:概念:负责处理I/O操作的事件循环。每个
- 【前端开发】能不能用Vue+Bootstrap进行项目开发?有什么需求场景需要用到的地方
爱上大树的小猪
vue.jsbootstrap前端
简介:Vue.jsVue.js(通常简称为Vue)是一个用于构建用户界面的渐进式JavaScript框架。它允许开发者创建高效的、交互式的单页面应用(SPA)。Vue的核心库专注于视图层,易于学习且集成到现有项目中,同时也能够为复杂的应用提供强大的功能支持。Vue通过组件化的方式让代码更加模块化、可重用和维护。BootstrapBootstrap是一个开源的CSS框架,旨在简化网页和Web应用的前
- 短视频矩阵系统源码---NGINX 、PHP7.4技术开发
t_18137784554
短视频矩阵系统矩阵线性代数音视频nginx
#短视频矩阵系统##短视频矩阵系统源码技术开发知识分享##短视频矩阵系统原生态开发#一、短视频矩阵系统源码基于原生态开发的几种方式原生代码:使用特定平台的原生编程语言和工具进行开发,而不是跨平台或混合开发技术。例如,iOS应用使用Swift或Objective-C,Android应用使用Java或Kotlin。原生框架和库:使用操作系统或平台提供的原生框架和库,而不是第三方或开源的替代品。这样可以
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 乡村振兴背景下县域农业数字化转型的关键要素与持续路径——基于30个案例的模糊集定性比较分析
罗伯特之技术屋
人工智能与智能系统专栏人工智能大数据政务
摘要:县域农业数字化转型是大力推进以县城为重要载体的城镇化建设及实现乡村振兴战略的重要途径。基于TOE理论框架,以我国30个县为案例,运用模糊集定性比较分析(fsQCA)方法探讨技术、组织和环境条件对县域农业数字化转型的组态效应及其持续路径。研究发现:存在驱动高水平县域农业数字化转型的四条路径,分别是以技术基础设施、财政资源供给和社会资本参与为核心条件的全能型,以财政资源供给和社会资本参与为核心条
- Spring Quick - 企业级Spring Boot快速启动框架深度解析
Jing_saveSlave
springbootspringspringbootjava
SpringQuick,顾名思义,是作者本人创建的一个基于SpringBoot+MyBatis-Plus+Sa-Token+Knife4j等框架结构搭建的一个企业级脚手架,方便企业及开发人员直接上手使用。并在项目中集成常用工具类,如MyBatis-Plus-Generator,Redisson等。还整合了整个项目代码四层架构规范(代码生成同时配置此规范)、统一响应体设计、业务异常、切面异常规范、切
- 【深度学习】PYTORCH框架中采用训练数据“CIFAR-10”实现RESNET50
别出BUG求求了
深度学习深度学习pytorchcifar-10resnet50神经网络
一、ResNet网络结构二、基本块三、RESNET50代码实现resnet50.pyimporttorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassResNet50BasicBlock(nn.Module):def__init__(self,in_channel,outs,kernerl_size,stride,padding):s
- BCPD++(非刚性配准) 算法原理详解
点云SLAM
点云数据处理技术算法BCPD++非刚性拼接点云数据处理贝叶斯模型
BCPD++算法原理详解一、算法概述BCPD++(BayesianCoherentPointDrift++)是BCPD(BayesianCoherentPointDrift)的增强版本,专为非刚性点云配准设计。它基于贝叶斯概率框架,结合变分推断与高效优化策略,显著提升了配准精度、鲁棒性与计算效率。BCPD++的核心创新在于:分层贝叶斯模型:自适应学习超参数,减少人工调参需求。变分贝叶斯推断:替代传
- React 开发全面指南:核心 API、方法函数及属性详解
北辰alk
前端reactreact.js前端前端框架
React作为当前最流行的前端框架之一,凭借其组件化、声明式编程和高效的虚拟DOM机制,成为构建复杂用户界面的首选工具。本文将深入解析React的核心API、方法函数及属性,覆盖从基础到高级的各个方面,助你全面掌握React开发技巧。文章目录1.React核心概念1.1组件化开发1.2JSX语法1.3虚拟DOM2.组件生命周期方法(类组件)2.1挂载阶段(Mounting)2.2更新阶段(Upda
- Vue 与 React 深度对比:从代码到原理的全方位解析
北辰alk
react前端vuevue.jsreact.js前端
Vue和React作为当前最主流的前端框架,各自凭借独特的理念和设计哲学赢得了大量开发者的青睐。Vue以“渐进式框架”和易上手著称,React则以“声明式UI”和灵活性见长。本文将从代码风格、底层原理、API设计、性能优化、生态系统等多个维度,对两者进行深度对比,助你在技术选型时做出明智决策。文章目录1.核心设计理念对比1.1Vue:渐进式框架1.2React:声明式UI库1.3哲学差异总结2.模
- Spring Cloud + Nacos + K8S 零影响发布方案
淡黄的Cherry
微服务相关kubernetesspringcloud容器
问题描述在生产环境中使用springcloud框架,由于服务更新过程中,容器服务会被直接停止,部分请求仍被分发到终止的容器,导致服务出现500错误,这部分错误请求数据占用比较少,因为Pod滚动更新都是一对一。因为部分用户会产生服务器错误的情况,考虑使用优雅的终止方式,将错误请求降到最低,直至滚动更新不影响用户。这里结合nacos使用来分析。在K8s的滚动升级中,比如5个Pod服务在升级过程中,会先
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- netty详细使用
酷爱码
编程学习netty
Netty是一个基于Java的高性能网络应用框架,主要用于快速开发高性能的网络通信应用程序。以下是Netty的详细使用步骤:添加Netty依赖:在项目的pom.xml中添加Netty的依赖项,例如:io.nettynetty-all4.1.66.Final创建Netty服务器:编写一个Netty服务器应用程序,监听指定的端口,并处理网络请求。以下是一个简单的示例:publicclassNettyS
- Spring框架中的AOP是什么?如何使用AOP实现切面编程和拦截器功能?
WangYaolove1314
springjava
1、Spring框架中的AOP是什么?如何使用AOP实现切面编程和拦截器功能?在Spring框架中,AOP(Aspect-OrientedProgramming,面向切面编程)是一种用于处理程序中不同方面的技术,例如日志、安全性、事务管理等。通过AOP,我们可以将特定的代码片段(称为切面)应用到应用程序的不同方面,而无需修改这些代码的其他部分。在Spring中,AOP的实现基于Java的动态代理和
- WebGPU与Web框架集成
天涯学馆
WebGL3D图形图像技术前端javascriptreact.jswebgl图像处理3d
目录React集成Vue集成Angular集成Svelte集成React集成将WebGPU与React集成,可以让您在React应用中利用现代Web图形和计算API来创建高性能的3D图形和计算任务。以下是一个简化的指南,介绍如何在React应用中集成WebGPU:1.准备环境确保你的开发环境支持WebGPU。目前,大多数现代浏览器已开始支持WebGPU,但可能需要在实验性特性中开启。同时,确保你的
- java开发工程师面试技巧
酷爱码
经验分享java面试开发语言
Java开发工程师面试是一个常见的技术岗位面试,以下是一些面试技巧和建议:熟悉Java基础知识:在面试中,会经常被问到Java基础知识,包括面向对象编程、集合框架、异常处理、多线程等内容。要确保对这些知识点有扎实的掌握。练习编程题目:在面试中,通常会有编程题目要求,因此建议提前练习一些常见的编程题目,例如算法和数据结构题目。深入了解项目经历:准备好详细了解自己之前的项目经历,包括项目的背景、自己的
- QT6开发高性能企业视频会议-5 Linux Audio开发
sqmeeting
linux运维服务器
Linux系统音频技术简介视频会议或者其他音视频通信应用都会涉及Audio/Voice的采集和播放,本文简单介绍Linux系统常用Audio开发框架和技术,并且配有示例代码。更完整的代码和应用请访问下面地址免费获取:国内:https://gitee.com/sqmeeting神旗视讯--开源高性能音视频系统目前,常用的Linux系统音频开发框架和SDK主要有如下几种:QtMultimedia简介:
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号