Java load order

http://www.danielschneller.com/2010/07/java-object-initialization-order-know.html


save for later

The first thing that happens when you run Java on Beetle is that you try to access Beetle.main( ) (a static method), so the loader goes out and finds the compiled code for the Beetle class (this happens to be in a file called Beetle.class). In the process of loading it, the loader notices that it has a base class (that’s what the extends keyword says), which it then loads. This will happen whether or not you’re going to make an object of that base class. (Try commenting out the object creation to prove it to yourself.)
If the base class has a base class, that second base class would then be loaded, and so on. Next, the static initialization in the root base class (in this case, Insect) is performed, and then the next derived class, and so on. This is important because the derived-class static initialization might depend on the base class member being initialized properly.
At this point, the necessary classes have all been loaded so the object can be created. First, all the primitives in this object are set to their default values and the object references are set to null—this happens in one fell swoop by setting the memory in the object to binary zero. Then the base-class constructor will be called. In this case the call is automatic, but you can also specify the base-class constructor call (as the first operation in the Beetle( ) constructor) by using super. The base class construction goes through the same process in the same order as the derived-class constructor. After the base-class constructor completes, the instance variables are initialized



All the procedures:

1.
The storage allocated for the object is initialized to binary zero before anything else happens.
2.
The base-class constructors are called as described previously. At this point, the overridden draw( ) method is called (yes, before the RoundGlyph constructor is called), which discovers a radius value of zero, due to Step 1.
3.
Member initializers are called in the order of declaration.
4.
The body of the derived-class constructor is called.

//: innerclasses/BigEgg2.java
// Proper inheritance of an inner class.
import static net.mindview.util.Print.*;
class Egg2 {
protected class Yolk {
public Yolk() { print("Egg2.Yolk()"); }
public void f() { print("Egg2.Yolk.f()");}
}
private Yolk y = new Yolk();
public Egg2() { print("New Egg2()"); }
public void insertYolk(Yolk yy) { y = yy; }
public void g() { y.f(); }
}
public class BigEgg2 extends Egg2 {
public class Yolk extends Egg2.Yolk {
public Yolk() { print("BigEgg2.Yolk()"); }
public void f() { print("BigEgg2.Yolk.f()"); }
}
public BigEgg2() { insertYolk(new Yolk()); }
public static void main(String[] args) {
Egg2 e2 = new BigEgg2();
e2.g();
}
} /* Output:
Egg2.Yolk()
New Egg2()
Egg2.Yolk()
BigEgg2.Yolk()
BigEgg2.Yolk.f()
*///:~



你可能感兴趣的:(Java load order)