- Java+Vue导出Excel
沐某人
VueJavajavavue.jsexcel
VueasyncdownloadFktz(){constres=awaitriskStandingBookApi.exportFktz(this.queryForm)if(res.code===200){document.getElementById('download').setAttribute('href','data:xlsx;base64,'+res.data)document.getE
- FastD:高性能PHP API框架
钟冶妙Tilda
FastD:高性能PHPAPI框架fastD:rocket:AhighperformancePHPAPIframework.项目地址:https://gitcode.com/gh_mirrors/fa/fastD项目介绍FastD是一个专为高性能API场景设计的PHP框架,它充分利用了Swoole的高性能特性,为开发者提供了一个轻量级且易于扩展的开发环境。FastD不仅支持快速构建API服务,还提
- 系统架构设计师—系统架构设计篇—轻量级架构
洛北辰南
系统架构设计师系统架构架构轻量级架构SSHSSM
文章目录基本概念轻量级架构持久层的优点SSHSSMHibernate与Mybatis的区别基本概念轻量级架构J2EE环境下,分层架构:表现层业务逻辑层持久层持久层的优点屏蔽数据库平台的变化对业务逻辑层的影响。通过持久层的封装处理,可以在持久层实现支持多种数据库平台,而对业务逻辑层提供统一的接口。代码可重用性高,能够完成所有的数据库访问操作。通过持久层,分离业务逻辑和数据逻辑,降低系统的耦合程度,结
- 适合于金融系统开发者的书籍大全
FeelTouch Labs
金融系统金融
以下是一些推荐的书籍,适合技术开发者:《AccountingforSoftwareDevelopers》(作者:MarkG.O'Brien)这本书专门为软件开发者撰写,介绍了会计原则和复式记账的基本概念,并将其与软件开发相结合。《AccountingInformationSystems》(作者:JamesA.Hall)本书深度探讨了会计信息系统,适合技术人员理解会计数据采集、处理和报告的方式。书中
- 深度学习 bert与Transformer的区别联系
Humingway
深度学习berttransformer
BERT(BidirectionalEncoderRepresentationsfromTransformers)和Transformer都是现代自然语言处理(NLP)中的重要概念,但它们代表不同的层面。理解这两者之间的区别与联系有助于更好地掌握它们在NLP任务中的应用。TransformerTransformer是一种特定的深度学习模型架构,由Vaswani等人在2017年的论文《Attenti
- 从零开始大模型开发与微调:编码器的实现
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:编码器的实现作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:自然语言处理,大模型,Transformer架构,编码器模块,序列到序列学习文章目录从零开始大模型开发与微调:编码器的实现1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1编码器模块简介2.2编码器与Transfo
- QwQ-32B企业级本地部署:结合XInference与Open-WebUI使用
大势下的牛马
搭建本地gptRAG知识库人工智能QwQ-32B
QwQ-32B是阿里巴巴Qwen团队推出的一款推理模型,拥有320亿参数,基于Transformer架构,采用大规模强化学习方法训练而成。它在数学推理、编程等复杂问题解决任务上表现出色,性能可媲美拥有6710亿参数的DeepSeek-R1。QwQ-32B在多个基准测试中表现出色,例如在AIME24基准上,其数学问题解决能力得分达到79.5,超过OpenAI的o1-mini。它在LiveBench、
- 图表option方法
几度泥的菜花
前端javascript算法
title:配置图表的标题信息。title:{text:'图表标题',//主标题subtext:'副标题',//副标题left:'center',//标题位置top:'top'//标题位置}tooltip:设置提示框(鼠标悬浮时显示的内容),支持多种形式的配置tooltip:{trigger:'axis',//'item'|'axis',可以是单个数据项,或轴上的多个数据项formatter:'{
- 远程控制与数据分析:工业中台助力港口起重机智能化
钡铼技术物联网关
linux边缘计算
在现代化港口运营中,起重机作为核心设备,其运行效率和安全性直接影响到整个港口的吞吐能力和经济效益。然而,传统的起重机监控方式往往依赖于人工巡检和定期维护,不仅效率低下,而且难以实时掌握设备状态。随着工业物联网(IIoT)技术的快速发展,工业物联中台(IndustrialIoTPlatform)应运而生,为港口起重机的远程监控提供了全新的解决方案。工业物联中台,简称“工业中台”,是一种集数据采集、处
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- flutter 如何与原生框架通讯安卓 和 ios
爱学习的大牛123
flutterflutter与原生通讯
在Flutter中与原生框架(Android和iOS)进行通信的主要方式是通过**平台通道(PlatformChannels)**。平台通道允许Flutter代码与原生代码进行双向通信。以下是详细的步骤和示例,说明如何在Flutter中与Android和iOS原生代码进行通信。###1.平台通道的基本概念平台通道是Flutter提供的一种机制,允许Dart代码与原生代码(Java/Kotlinfo
- cocos creator从零开发简单框架(13)-Panel打开关闭
mirahs
cocoscreator从零开发简单框架cocos2d
编辑framework/scripts/AppConstants.ts,内容如下。定义了Panel的显示方式和遮罩类型,遮罩类型可以叠加,即可同时拥有不可穿透、半透明、关闭组件特性。//Panel显示方式publicstaticreadonlypanelShowStyle={//正常出现Normal:1,//中间变大CenterSmallToBig:2,//上往中UpToCenter:3,//下往
- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 通信行业语言大模型技术和应用研究
人工智能-猫猫
学习AIGC语言模型人工智能
摘要ChatGPT的出现迅速引爆了AI的又一波热潮。在通信行业中,网络规划、建设、维护、优化、运营是非常耗时、复杂且需要大量人力成本的工作。语言大模型在通信运营商中有着非常广阔的应用前景。阐述了语言大模型开发的基本技术方案及原理并对其在通信行业的应用进行了研究与展望。前言ChatGPT的出现迅速引爆了AI的又一波热潮。作为一种人工智能技术驱动的语言大模型,ChatGPT使用了Transformer
- [Base]DIFFERENTIAL TRANSFORMER
Xy-unu
transformer深度学习人工智能
1.BaseInfoTitleDIFFERENTIALTRANSFORMERAdresshttps://arxiv.org/pdf/2410.05258Journal/Time202410Author微软研究院和清华大学提出Codehttps://aka.ms/Diff-TransformerRead2411112.CreativeQ&A减少对无关上下文的关注;通过计算两个Softmax注意力权重
- 差分注意力,负注意力的引入
syugyou
pytorchpython
文章目录DifferentialTransformer差分注意力,负注意力的引入相关链接介绍初始化函数多头差分注意力DifferentialTransformer差分注意力,负注意力的引入相关链接ai-algorithms/README.mdatmain·Jaykef/ai-algorithms(github.com)unilm/Diff-Transformeratmaster·microsoft
- Transformer大模型实战 对比ALBERT与BERT
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题在当今人工智能领域的迅速发展中,Transformer大模型无疑成为了自然语言处理(NLP)领域的璀璨明星。为了深入理解这一技术,我们特别撰写了《Transformer大模型实战对比ALBERT与BERT》这篇文章,旨在为广大读者提供一场关于Transformer模型及其实战应用的技术盛宴。关键词:Transformer,BERT,ALBERT,自然语言处理,深度学习,模型对比,实战应用摘
- Diffusion Transformer与Differential Transformer:技术创新与应用前景
AI大模型learner
深度学习人工智能机器学习
引言Transformer架构已成为自然语言处理(NLP)和计算机视觉(CV)领域的主流技术。随着技术的不断发展,DiffusionTransformer和DifferentialTransformer等新型架构逐步涌现,为生成模型和注意力机制带来了突破性的进展。本文旨在从科学视角探讨这两种模型的核心原理、技术特点及应用前景。DiffusionTransformer概念与原理DiffusionTr
- 差分革命:清华微软携手,用物理智慧重塑Transformer“慧眼”
YINWA AI
人工智能科技AI人工智能科技ai
当物理学遇上AI,一场精准捕捉的变革悄然上演想象一下,在信息的汪洋大海中,寻找一根至关重要的“针”,难度无异于“大海捞针”。然而,随着诺贝尔物理学奖的光芒照耀到“机器学习之父”GeoffreyHinton的肩头,另一场跨界融合也在悄然进行——微软与清华大学的科研团队携手,将物理学的智慧融入AI,推出DifferentialTransformer(DIFFTransformer),让Transfor
- 【C++ 系列文章 基础 01 -- std::string 与 fmt::format】
主公讲 ARM
#C++系列文章c++开发语言C++
文章目录Overview1.C++中的std::string简介2.fmt::format格式化函数简介3.示例代码解析4.应用场景与优势2.std::string与fmt::format简介std::stringfmt::format3.代码解析3.1格式化字符串生成3.2调用函数cmd_handler3.3返回id_code4.代码整体流程与应用场景5.总结Overview下面将详细介绍C++
- Vision Transformer (ViT):将Transformer带入计算机视觉的革命性尝试(代码实现)
阿正的梦工坊
DeepLearningDLPaperstransformer计算机视觉深度学习
VisionTransformer(ViT):将Transformer带入计算机视觉的革命性尝试作为一名深度学习研究者,如果你对自然语言处理(NLP)领域的Transformer架构了如指掌,那么你一定不会对它在序列建模中的强大能力感到陌生。然而,2021年由GoogleResearch团队在ICLR上发表的论文《ANIMAGEISWORTH16x16WORDS:TRANSFORMERSFORIM
- mmcv-full==报错
wzh18___
python
ERROR:Nomatchingdistributionfoundformmcv-full==这个东西卡了我好几个小时特地来写一个帮助大家主要是参照官方的内容,下面这个网址https://github.com/open-mmlab/mmcv/blob/main/README_zh-CN.md上面这个2.x版本的链接https://github.com/open-mmlab/mmcv/blob/1.
- 普通人怎么利用GPT赚钱之创建自动化工具
贫苦游商
普通人利用AI搞钱系列gpt自动化运维人工智能算法机器学习
利用GPT创建自动化工具:从构想到实现的详细指南在当前快速发展的科技时代,人工智能(AI)正在改变各行各业的工作方式。对于普通人来说,利用GPT(GenerativePre-trainedTransformer)这样的语言模型来创建自动化工具,并通过这些工具赚钱,已经成为一种切实可行的方法。本文将探讨普通人如何在中文平台上利用GPT创建自动化工具,从而实现盈利。什么是GPT?首先,我们需要了解什么
- openfeign发送 多部分请求
荭色海湾
SpringBootjava前端服务器
@PostMapping(value="/upload",consumes=MediaType.MULTIPART_FORM_DATA_VALUE)publicResultVoupload(@RequestPart("file")MultipartFile[]file,@RequestParam("path")Stringpath);
- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- 从Swish到SwiGLU:激活函数的进化与革命,qwen2.5应用的激活函数
KangkangLoveNLP
qwen2.5人工智能算法神经网络机器学习深度学习cnn自然语言处理
swiGLU和RMSNorm1.什么是swiGLUSwiGLU(Swish-GatedLinearUnit)是一种结合了Swish激活函数和GLU(GatedLinearUnit)门控机制的激活函数,广泛应用于现代大型语言模型中1.什么是Swish激活函数1.1Swish激活函数Swish激活函数是一种平滑的、非单调的激活函数,由GoogleBrain团队在2017年提出。它结合了ReLU的非线性
- 整理:4篇论文介绍实时语义分割的未来,Transformer架构下的性能与效率平衡
mslion
transformer深度学习人工智能语义分割
在Transformer架构推动下,计算机视觉领域致力于打造一个极为强大且通用的大规模模型,它能处理物体检测、图像分割等多种任务。不少基于Transformer架构的研究成果显著,其通用模型在特定应用中表现出色,在图像和视频分割方面,通用设计的研究成果也超越了以往定制模型。其中,分割一切模型(SAM)在交互式分割中表现突出,能统一应对点、边界框、掩码和文本输入等交互方式。然而,多数此类研究存在弊端
- WinForms/WPF中,如何隐藏或者显示TextBox控件的边框
解夏914
开发语言c#
在WinForms中,可以通过设置TextBox的BorderStyle属性来隐藏或显示其边框:隐藏边框:textBox1.BorderStyle=BorderStyle.None;显示边框:textBox1.BorderStyle=BorderStyle.Fixed3D;//或者BorderStyle.FixedSingle;注意,当BorderStyle设置为None时,TextBox的边框将
- mt4j android,Brainstorming und Mind-Mapping im Multi-Device-Kontext. Konzeption und prototypische Im...
Oxygenfia
mt4jandroid
摘要:DievorliegendeArbeitbeschreibtdieKonzeptionundprototypischeImplementierungeinerAnwendungzurelektronischenUnterstützungvonBrainstorming-undMind-Mapping-SitzungenaneinemmultitouchfhigenTabletopmitSma
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多