- Apache storm
赵世炎
stormhadoop
Apachestorm是一个分布式的实时大数据处理系统。用于在容错和水平可拓展方法中处理大量数据。它是一个流数据框架,具有很高的摄取率,无状态。通过zk管理分布式环境和集群状态,并行地对实时数据执行各种操作。storm易于设置和操作,并且它保证每个消息将通过拓扑至少处理一次。基本上Hadoop和Storm框架用于分析大数据。两者互补,在某些方面有所不同。ApacheStorm执行除持久性之外的所有
- Apache Storm实时流处理的核心技术
Hello.Reader
大数据apachestorm大数据
1.引言ApacheStorm是一个开源的、分布式的实时计算系统,专为处理流式数据而设计。它能够处理大量数据流并在极低的延迟下提供实时的结果。相比于传统的批处理系统,Storm具有处理无限数据流的能力,支持非常高的可扩展性和容错机制。Storm可以适用于多种编程语言,具有高度的灵活性。1.1什么是ApacheStorm?ApacheStorm是一个流处理引擎,它可以持续处理不断到来的数据流(str
- Storm实战常见问题及解决方案
Lzy失控的
storm-分布式流式计算bigdata-大数据
原文seehttp://blog.sina.com.cn/s/blog_8c243ea30101k0k1.html1关于Storm集群1.1关于storm集群的环境变量配置问题安装好JDK后,需要配置环境变量,通常情况下出于经验,我们往往会修改/etc/profile的值进行环境变量配置,但这在安装JDK以及后面安装的storm集群、zookeeper集群以及metaq集群时会出问题,这时候我们需
- Apache Storm:实时数据处理的闪电战
Aaron_945
Javaapachestorm大数据
文章目录ApacheStorm原理拓扑结构数据流处理容错机制官网链接基础使用安装与配置编写拓扑提交与运行高级使用状态管理窗口操作多语言支持优点高吞吐量低延迟可扩展性容错性总结ApacheStorm是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨ApacheStorm的原理、基础使用、高级特性及其优点
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- Java Stream 流的介绍
吱屋猪_
java
介绍在Java8中,引入了StreamAPI,它为处理集合(如List、Set等)提供了一种更简洁、声明式的方式。Stream流的设计目标是支持对数据集合的高效操作,尤其是能够进行链式操作、并行处理等,极大地提升了代码的可读性和可维护性。本文将介绍JavaStream流的基础概念、常用操作以及如何利用Stream进行集合数据处理。1.什么是Stream流Stream是Java8引入的一个新的类,它
- Node.js入门(学习笔记)
唐小艾
学习笔记node.js
文章目录简介NodeJS下载安装下载安装NodeJS与WebStorm整合JS文件运行CommonJS规范模块模块化定义模块引用模块标识node中的对象globalexports和module.exports属性方法引用包packageNPM(NodePackageManager)NPM命令NPM包引用NPM注意下载速度慢Nodejs核心模块Buffer模块buffer类方法buffer实例的属性
- JetBrains(全家桶: IDEA、WebStorm、GoLand、PyCharm) 2024.3+ 2025 版免费体验方案
qq251708339
intellij-ideawebstormpycharm免费非破解2025
JetBrains(全家桶:IDEA、WebStorm、GoLand、PyCharm)2024.3+2025版免费体验方案前言JetBrainsIDE是许多开发者的主力工具,但从2024.02版本起,JetBrains调整了试用政策,新用户不再享有默认的30天免费试用,这对想要体验新版功能的用户带来了一定限制。本指南介绍如何合理获取JetBrains的最新体验权限,并提供一些解决方案,帮助你顺利使
- Webpack 前端性能优化全攻略
北辰alk
前端vue前端webpack性能优化
文章目录1.性能优化全景图1.1优化维度概览1.2优化效果指标2.构建速度优化2.1缓存策略2.2并行处理2.3减少构建范围3.输出质量优化3.1代码分割3.2TreeShaking3.3压缩优化4.运行时性能优化4.1懒加载4.2预加载4.3资源优化5.高级优化策略5.1持久化缓存5.2模块联邦5.3性能分析6.优化效果验证6.1构建速度分析6.2性能监控7.最佳实践总结7.1优化策略7.2持续
- 计算机体系结构的五大流派,你知道几个?
绿算技术
计算机五大流派https信息与通信硬件工程缓存
在计算机的世界里,架构设计是决定性能和应用场景的关键。从经典的冯·诺依曼结构到现代的并行处理结构,每一种体系结构都有其独特的优势和适用场景。今天,我们绿算与大家一起聊聊计算机体系结构的五大流派,以及它们背后的厂商和应用领域。1.冯·诺依曼结构:现代计算机的基石冯·诺依曼结构是现代计算机的基础,几乎所有通用计算机系统都基于这一结构或其变体。它的核心特点是程序和数据共享同一存储空间,通过一条总线进行传
- 浅谈StarRocks数据库简介及应用
微笑的曙光(StevenLi)
数据库数据库
StarRocks是一款高性能的实时分析型数据库,专为复杂的SQL查询提供极高的性能,尤其适用于数据分析场景。它是一款开源的新一代极速全场景MPP(MassivelyParallelProcessing,大规模并行处理)数据库,致力于构建极速和统一的分析体验。StarRocks兼容MySQL协议,用户可以使用MySQL客户端和常用的BI(BusinessIntelligence,商业智能)工具进行
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- 【推荐】爽,在 IDE 中做 LeetCode 题目的插件
ideleetcode
大家好,我是V哥。今天给大家推荐一款神器插件,废话不多说,马上开整。leetcode-editor是一个可以在IDE中做LeetCode题目的插件仓库,以下是对该仓库的详细介绍:来看一下这个神器是啥基本信息名称:LeetcodeEditor支持平台:理论上支持IntelliJIDEA、PhpStorm、WebStorm、PyCharm、RubyMine、AppCode、CLion、GoLand、D
- 锐捷 | 交换机配置 边缘端口+BPDU
小Mie不吃饭
网络设备系列网络运维
在S3、S4开启边缘端口和BPDU防护功能;检测到环路后处理方式为关闭端口。如果端口检测进入禁用状态,设置200秒后会自动恢复。为了在两台交换机S3和S4上配置边缘端口和BPDU防护功能,并在检测到环路后自动恢复端口,您可以按照以下步骤进行配置:步骤1:配置边缘端口在S3和S4上配置边缘端口,使其能够快速进入转发状态。S3配置S3#configureterminalS3(config)#inter
- 67-OpenCVSharp 创建实现Halcon的tile_images_offset算子(用于图像拼接,对每张图像设置偏移量)
搬码驿站
#opencv计算机视觉人工智能算法图像处理
以下是基于OpenCvSharp实现的Halcontile_images_offset算子的高性能函数。该函数不仅支持图像拼接,还允许对每张图像设置偏移量(offset),以灵活布局图像。代码中包含了详细注释和性能优化策略。为了优化运行时间和性能,我们可以从以下几个方面对代码进行改进:并行处理:利用多核CPU的能力,通过Parallel.For或其他并行技术加速图像复制操作。减少边界检查开销:在确
- mt4j android,Brainstorming und Mind-Mapping im Multi-Device-Kontext. Konzeption und prototypische Im...
Oxygenfia
mt4jandroid
摘要:DievorliegendeArbeitbeschreibtdieKonzeptionundprototypischeImplementierungeinerAnwendungzurelektronischenUnterstützungvonBrainstorming-undMind-Mapping-SitzungenaneinemmultitouchfhigenTabletopmitSma
- Doris集群启停脚步
江畔独步
数据仓库
ApacheDoris是一个基于MPP(大规模并行处理)架构的高性能、实时的分析型数据库。在Doris中,FE(Frontend)、BE(Backend)和Broker组件有特定的启动和关闭顺序,下面详细介绍一下。一、启动顺序通常按照FE->BE->Broker的顺序启动,以下是对该顺序的详细解释:启动FEFE是Doris的前端节点,负责元数据管理、查询规划、权限管理等功能,是整个系统的核心控制节
- Sglang部署大模型常用参数详解
小树苗m
sglangvllmdeepseek
Sglang部署大模型常用参数详解常用启动命令HTTP服务器配置API配置并行处理张量并行数据并行专家并行内存和调度其他运行时选项日志记录多节点分布式服务LoRA内核后端约束解码推测解码双稀疏性调试选项优化选项参数概览常用启动命令要启用多GPU张量并行性,请添加--tp2。如果报告错误“这些设备之间不支持对等访问”,请在服务器启动命令中添加--enable-p2p-check。python-msg
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- 揭秘!Redis 分布式锁在订单创建系统中的精妙应用
一、引言在当今数字化的浪潮中,分布式系统已成为众多企业构建大规模应用的首选架构。在分布式环境下,多个服务实例并行处理请求,当涉及到对共享资源的操作时,如创建订单,若缺乏有效的同步机制,就极易引发数据不一致、重复提交等棘手问题。分布式锁作为解决这些问题的关键技术,能确保在分布式环境下对共享资源的互斥访问。Redis凭借其高性能和支持原子操作的特性,成为实现分布式锁的热门选择。接下来,我们将深入剖析R
- conda运行python_python conda操作方法
weixin_39747975
conda运行python
conda虚拟环境安装Listitemcondaenvlist#查看已安装虚拟环境下面以storm_control的安装为例1.查看已安装虚拟环境condaenvlist可以发现已经安装的虚拟环境都是默认在Anaconda3/envs/“my_name”里面2.安装新的虚拟环境:condacreate--namemyenvpython=3.6myenv是我们自己取的名字3.激活虚拟环境:activ
- MapReduce:分布式计算的基石
Earth explosion
mapreduce大数据
MapReduce是一种用于处理和生成大数据集的编程模型,以及一个用于执行该模型的关联实现。它使得在大型商用硬件集群(数千台机器)上进行并行处理海量数据成为可能。本文将深入探讨MapReduce的核心概念、工作原理、应用场景以及一些高级主题。核心概念:分而治之MapReduce的核心思想是“分而治之”。它将复杂的计算任务分解成两个主要阶段:Map阶段和Reduce阶段。Map阶段:输入数据被分割成
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Manus:全球首款通用AI Agent的探索与挑战
搬砖码农SmallNNN
AI工具人工智能AI工具
一、Manus简介Manus是由中国初创公司Monica.im开发的一款通用型AIAgent产品。它以“知识与行动的结合”为核心理念,致力于实现“知行合一”,通过“规划-执行-验证”的多代理协同架构,能够自主拆解复杂任务并并行处理。二、如何申请Manus官方试用?目前Manus处于内测阶段,需通过邀请码体验,以下是主要申请途径:官网申请:访问Manus官网,点击“GetStarted”→“Appl
- 网络安全工具汇总
Hacker_Fuchen
web安全安全
网络安全工具汇总漏洞及渗透练习平台WebGoat漏洞练习环境https://github.com/WebGoat/WebGoathttps://github.com/WebGoat/WebGoat-LegacyDamnVulnerableWebApplication(漏洞练习平台)https://github.com/RandomStorm/DVWA数据库注入练习平台https://github.
- ECC升级到S/4 HANA的功能差异 物料、采购、库存管理对比指南
snpgroupcn
运维安全数据库架构
ECC升级到S/4HANA后,S4将数据库更换为HANA后性能有一定提升,对于自开发程序,可以同时将计算和部分业务逻辑下推到HANA数据库层,减少应用层和数据库层的交互次数和数据传输,只返回需要的结果到应用层和显示层。提升自开发报表的运行效率。表结构和功能做了重构,底层代码基于HANA数据进行了重写;开发层面有较大变化,很多程序在ECC升级到S/4HANA后需要调整后才能使用;SAPECCvsS/
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟